Roots and stem-bark of Mahonia aquifolium (Oregon grape) (Berberidaceae) are effectively used in the treatment of skin inflammatory conditions.In the present study, the effect of Mahonia aquifolium crude extract and its two representative alkaloid fractions containing protoberberine and bisbenzylisoquinoline (BBIQ) alkaloids on activity of 12-lipoxygenase (12-LOX), was studied. The reactivity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH), a free stable radical, was evaluated to elucidate the rate of possible lipid-derived radical scavenging in the mechanism of the enzyme inhibition.The results indicate that although the direct radical scavenging mechanism cannot be ruled out in the lipoxygenase inhibition by Mahonia aquifolium and its constituents, other mechanisms based on specific interaction between enzyme and alkaloids could play the critical role in the lipoxygenase inhibition rather than non-specific reactivity with free radicals.
Phospholipase D (PLD) from plants or microorganisms is used as biocatalyst in the transformation of phospholipids and phospholipid analogs in both laboratory and industrial scale. In recent years the elucidation of the primary structure of many PLDs from several sources, as well as the resolution of the first crystal structure of a microbial PLD, have yielded new insights into the structural basis and the catalytic mechanism of this catalyst. This review summarizes some new results of PLD research in the light of application.
The biocatalytical potential of two new phospholipase D (PLD) isoenzymes from poppy seedlings (Papaver somniferum L.), PLD-A and PLD-B, was examined by comparing their activities in phospholipid transformation. Both enzymes showed the same ratio in rates of hydrolysis [phosphatidylcholine (PC):phosphatidylglycerol (PG):phosphatidylserine:phosphatidylinositol = 1:0.5:0.3:0.1] and were inactive towards phosphatidylethanolamine (PE). PLD-A did not catalyze head group exchange whereas PLD-B showed a high transphosphatidylation potential in the conversion of PC into PG and PE. This enzyme also catalyzed the transesterification of octadecylphosphocholine into octadecylphosphoglycerol or octadecylphosphoethanolamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.