The aim of this paper is to propose a new non-invasive methodology to estimate thermogenesis in newborns with perinatal asphyxia (PA) undergoing therapeutic hypothermia (TH). Metabolic heat production (with respect to either a neonate’s body mass or its body surface) is calculated from the newborn’s heat balance, estimating all remaining terms of this heat balance utilising results of only non-invasive thermal measurements. The measurement devices work with standard equipment used for therapeutic hypothermia and are equipped with the Global System for Mobile Communications (GSM), which allows one to record and monitor the course of the therapy remotely (using an internet browser) without disturbing the medical personnel. This methodology allows one to estimate thermogenesis in newborns with perinatal asphyxia undergoing therapeutic hypothermia. It also offers information about instantaneous values of the rate of cooling together with values of remaining rates of heat transfer. It also shows the trend of any changes, which are recorded during treatment. Having information about all components of the heat balance one is able to facilitate comparison of results obtained for different patients, in whom these components may differ. The proposed method can be a new tool for measuring heat balance with the possibility of offering better predictions regarding short-term neurologic outcomes and tailored management in newborns treated by TH.
The energy balance and heat exchange for newborn baby in radiant warmer environment are considered. The present study was performed to assess the body dry heat loss from an infant in radiant warmer, using copper cast anthropomorphic thermal manikin and controlled climate chamber laboratory setup. The total body dry heat losses were measured for varying manikin surface temperatures (nine levels between 32.5 • C and 40.1 • C) and ambient air temperatures (five levels between 23.5 • C and 29.7 • C). Radiant heat losses were estimated based on measured climate chamber wall temperatures. After subtracting radiant part, resulting convective heat loses were compared with computed ones (based on Nu correlations for common geometries). Simplified geometry of newborn baby was represented as: (a) single cylinder and (b) weighted sum of 5 cylinders and sphere. The predicted values are significantly overestimated relative to measured ones by: 28.8% (SD 23.5%) for (a) and 40.9% (SD 25.2%) for (b). This showed that use of adopted general purpose correlations for approximation of convective heat losses of newborn baby can lead to substantial errors. Hence, new Nu number correlating equation is proposed. The mean error introduced by proposed correlation was reduced to 1.4% (SD 11.97%), i.e. no significant overestimation. The thermal manikin appears to provide a precise method for the noninvasive assessment of thermal conditions in neonatal care.
In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect -coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.