In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron-hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.
The Fortran LHAPDF library has been a longterm workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond.
We present a process-independent technique to consistently combine nextto-leading order parton-level calculations of varying jet multiplicity and parton showers. Double counting is avoided by means of a modified truncated shower scheme. This method preserves both the fixed-order accuracy of the parton-level result and the logarithmic accuracy of the parton shower. We discuss the renormalisation and factorisation scale dependence of the approach and present results from an automated implementation in the SHERPA event generator using the test case of W -boson production at the Large Hadron Collider. We observe a dramatic reduction of theoretical uncertainties compared to existing methods which underlines the predictive power of our novel technique.
SHERPA is a general-purpose Monte Carlo event generator for the simulation of particle collisions in high-energy collider experiments. We summarise essential features and improvements of the SHERPA 2.2 release series, which is heavily used for event generation in the analysis and interpretation of LHC Run 1 and Run 2 data. We highlight a decade of developments towards ever higher precision in the simulation of particle-collision events. Figure 1: Overview of the SHERPA 2.2 event generator framework. Interfaces/OutputsAMEGIC [6] and COMIX [7,8]. They are used for the simulation of parton-level events within the Standard Model and beyond, and for the decay of heavy resonances such as W , Z, or Higgs bosons or top quarks. Both include automated methods for efficient phase-space integration and algorithms for the subtraction of infrared divergences in calculations at next-to-leading order (NLO) in QCD [9, 10, 11] and the electroweak theory [12]. For the evaluation of virtual corrections at NLO accuracy SHERPA relies on interfaces to dedicated one-loop providers, e.g. BLACKHAT [13], OPENLOOPS [14] and RECOLA [15,16]. The default parton-showering algorithm of the SHERPA 2.2 series is the CSSHOWER [17], based on Catani-Seymour dipole factorisation [9,10,18]. As of version 2.2.0 SHERPA also features an independent second shower implementation, DIRE [19,20,21]. For the matching of NLO QCD matrix elements with parton showers SHERPA implements the MC@NLO method [22,23]. For NNLO QCD calculations the UN 2 LOPS method [24, 25] is used. The merging of multi-jet production processes at leading order [26,27,28] and next-to-leading order [29,30] is based on truncated parton showers. Multiple parton interactions are implemented via the Sjöstrand-van-Zijl model [31]. The hadronisation of partons into hadrons is modelled by a cluster fragmentation model [32]. Alternatively, in particular for uncertainty estimations, an interface to the Lund fragmentation model [33] of PYTHIA [34] is available. SHERPA provides a large library for the simulation of τ -lepton and hadron decays, including many form-factor models. Furthermore, a module for the simulation of QED final-state radiation in particle decays [35], which is accurate to first order in α for many channels is built-in. To account for spin correlations in production and subsequent decay processes the algorithm described in [36] is implemented. Events generated with SHERPA can be cast into various output formats for further processing, with the HEPMC [37] format being the most commonly used. In the specific case of parton-level events, at the leading and next-to-leading order in QCD, additional output formats are supported. They include Les Houches Event Files [38], NTUPLE files for NLO QCD events [39] and cross-section interpolation grids produced via MCGRID [40,41] in the APPLGRID [42] and FASTNLO [43,44] formats. To analyse events on-the-fly a runtime interface to the RIVET package [45] can be used conveniently.
In this publication, uncertainties in and differences between the MC@NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA and based on Catani-Seymour subtraction are employed to assess the impact on a representative selection of observables. In the case of MC@NLO a substantial simplification is achieved by using dipole subtraction terms to generate the first emission. A phase space restriction is employed, which allows to vary in a transparent way the amount of nonsingular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W ± and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.