In rehabilitation, assistive and space robotics, the capability to track the body posture of a user in real time is highly desirable. In more specific cases, such as teleoperated extra-vehicular activity, prosthetics and home service robotics, the ideal posture-tracking device must also be wearable, light and low-power, while still enforcing the best possible accuracy. Additionally, the device must be targeted at effective human-machine interaction. In this paper, we present and test such a device based upon commercial inertial measurement units: it weighs 575 g in total, lasts up to 10.5 h of continual operation, can be donned and doffed in under a minute and costs less than 290 EUR. We assess the attainable performance in terms of error in an online trajectory-tracking task in Virtual Reality using the device through an experiment involving 10 subjects, showing that an average user can attain a precision of 0.66 cm during a static precision task and 6.33 cm while tracking a moving trajectory, when tested in the full peri-personal space of a user.
In the field of rehabilitation robotics, transparent, precise and intuitive control of hand exoskeletons still represents a substantial challenge. In particular, the use of compliant systems often leads to a trade-off between lightness and material flexibility, and control precision. In this paper, we present a compliant, actuated glove with a control scheme to detect the user's motion intent, which is estimated by a machine learning algorithm based on muscle activity. Six healthy study participants used the glove in three assistance conditions during a force reaching task. The results suggest that active assistance from the glove can aid the user, reducing the muscular activity needed to attain a medium-high grasp force, and that closedloop control of a compliant assistive glove can successfully be implemented by means of a machine learning algorithm.
The paralysis of the muscles controlling the hand dramatically limits the quality of life of individuals living with spinal cord injury (SCI). Here, we present a non-invasive neural interface technology that will change the lives of individuals living with cervical SCI (C4-C6). We demonstrate that eight motor- and sensory-complete SCI individuals (C5-C6, n = 7; C4, n = 1) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with spared corticospinal pathways. In all tested patients, we identified groups of motor units under voluntary control that encoded a variety of hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand digit flexions and extensions. We then mapped the neural dynamics into a real-time controlled virtual hand. The patients were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to voluntarily controlled neural activity in complete cervical SCI individuals.
Neuromuscular functional electrical stimulation represents a valid technique for functional rehabilitation or, in the form of a neuroprosthesis, for the assistance of neurological patients. However, the selected stimulation of single muscles through surface electrodes remains challenging particularly for the upper extremity. In this paper, we present the MyoCeption, a comprehensive setup, which enables intuitive modeling of the user's musculoskeletal system, as well as proportional stimulation of the muscles with 16-bit resolution through up to 10 channels. The system can be used to provide open-loop force control, which, if coupled with an adequate body tracking system, can be used to implement an impedance control where the control loop is closed around the body posture. The system is completely self-contained and can be used in a wide array of scenarios, from rehabilitation to VR to teleoperation. Here, the MyoCeption's control environment has been experimentally validated through comparison with a third-party simulation suite. The results indicate that the musculoskeletal model used for the MyoCeption provides muscle geometries that are qualitatively similar to those computed in the baseline model.
Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator. Several technological methods that form the backbone of the MATM approach have already been successfully demonstrated in accomplished telerobotic space missions. On this basis, we have applied our approach in more recent research to applications in the fields of orbital robotics, telesurgery, caregiving, and telenavigation. In the course of this work, we have advanced specific aspects of the approach that were of particular importance for each respective application, especially shared autonomy, and haptic augmentation. This overview paper discusses the MATM approach in detail, presents the latest research results of the various technologies encompassed within this approach, provides a retrospective of DLR's telerobotic space missions, demonstrates the broad application potential of MATM based on the aforementioned use cases, and outlines lessons learned and open challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.