Smart devices along with sensors are gaining in popularity with the promise of making life easier for the owner. As the number of sensors in an Internet of Things (IoT) system grows, a question arises as to whether the transmission between the sensors and the IoT devices is reliable and whether the user receives alerts correctly and in a timely manner. Increased deployment of IoT devices with sensors increases possible safety risks. It is IoT devices that are often misused to create Distributed Denial of Service (DDoS) attacks, which is due to the weak security of IoT devices against misuse. The article looks at the issue from the opposite point of view, when the target of a DDoS attack are IoT devices in a smart home environment. The article examines how IoT devices and the entire smart home will behave if they become victims of a DDoS attack aimed at the smart home from the outside. The question of security was asked in terms of whether a legitimate user can continue to control and receive information from IoT sensors, which is available during normal operation of the smart home. The case study was done both from the point of view of the attack on the central units managing the IoT sensors directly, as well as on the smart-home personal assistant systems, with which the user can control the IoT sensors. The article presents experimental results for individual attacks performed in the case study and demonstrates the resistance of real IoT sensors against DDoS attack. The main novelty of the article is that the implementation of a personal assistant into the smart home environment increases the resistance of the user’s communication with the sensors. This study is a pilot testing the selected sensor sample to show behavior of smart home under DDoS attack.
Usually, the existence of a complex network is considered an advantage feature and efforts are made to increase its robustness against an attack. However, there exist also harmful and/or malicious networks, from social ones like spreading hoax, corruption, phishing, extremist ideology, and terrorist support up to computer networks spreading computer viruses or DDoS attack software or even biological networks of carriers or transport centers spreading disease among the population. New attack strategy can be therefore used against malicious networks, as well as in a worst-case scenario test for robustness of a useful network. A common measure of robustness of networks is their disintegration level after removal of a fraction of nodes. This robustness can be calculated as a ratio of the number of nodes of the greatest remaining network component against the number of nodes in the original network. Our paper presents a combination of heuristics optimized for an attack on a complex network to achieve its greatest disintegration. Nodes are deleted sequentially based on a heuristic criterion. Efficiency of classical attack approaches is compared to the proposed approach on Barabási-Albert, scale-free with tunable power-law exponent, and Erdős-Rényi models of complex networks and on real-world networks. Our attack strategy results in a faster disintegration, which is counterbalanced by its slightly increased computational demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.