We carried out measurements of domain wall (DW) velocities driven by magnetic field pulses in symmetric Pt/Co/Pt and asymmetric Pt/Co/AlOx, Pt/Co/GdOx and Pt/Co/Gd trilayers with ultrathin Co layers and perpendicular magnetic anisotropy. In agreement with theoretical models, the maximum observed velocity is much larger in the asymmetric samples, where the interfacial Dzyaloshinskii-Moriya interaction (DMI) stabilises chiral Néel walls, than in the symmetric stack. In addition, in Pt/Co/Gd very large DW speeds (up to 600 m/s) are obtained, 2.5 times larger than in samples with oxidised Gd. Magnetic measurements reveal that this may be explained by the anti-parallel coupling between the magnetic moments of Gd and Co at the Gd/Co interface, leading to a decrease of the total magnetisation. In quantitative agreement with analytical models, in all samples the maximum observed DW speed scales as D/Ms, where D is the strength of the DMI and Ms the spontaneous magnetisation.
We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value of the domain wall velocity asymmetry changes along the wedge. We show that in our samples the domain wall speed versus Hx curves in the creep regime cannot be explained simply in terms of the variation of the domain wall energy with Hx, as suggested by previous works. For this reason the strength and the sign of the DMI cannot be extracted from these measurements. To obtain reliable information on the DMI strength using magnetic field-induced domain wall dynamics, measurements have been performed with high fields, bringing the DW close to the flow regime of propagation. In this case we find large values of the DMI, consistent in magnitude and sign with those obtained from Brillouin light scattering measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.