Repetitive systemic exposure to high concentrations of curcumin achieved by Theracurmin did not increase the incidence of adverse events in cancer patients receiving gemcitabine-based chemotherapy.
The Japanese scallop (Mizuhopecten yessoensis) is one of the main fishery products in Japan, but with the expansion of culture operations of the Japanese scallop, various problems have been encountered including high mortality, poor growth, poor seed production, and so on. Moreover, there is concern that many years of cultivation may have affected the genetic structure of the scallop population. To approach these problems and concerns, we developed microsatellite markers as a molecular tool for population genetic studies. By using 4 microsatellite markers as well as a mitochondrial marker, we investigated the genetic structure of samples from the islands of Hokkaido (14 populations) and Honshu (Tohoku, 3 populations) in Japan, and south Primorye (4 populations) in Russia. All the populations sampled had high genetic diversity (average expected heterozygosity, 0.7011 to 0.7622; haplotype diversity, 0.6090 to 0.8848), and almost all showed a tendency of homozygote excess, which was significant in 2 populations. Hierarchical analysis of molecular variance tests based on the microsatellite and mitochondrial markers indicated that the 3 geographic regions were genetically divergent from one another, with little evidence of divergence within regions. Homogeneity in allele frequency distributions between natural and cultured scallops and allele frequency stability over a period of 2 decades indicated that the culturing operations have probably not had a substantial effect on the genetic structure of the populations.
To examine the genetic structure of Japanese scallop populations (Mizuhopecten yessoensis) in Hokkaido prefecture, Japan, and compare it with those in the Aomori prefecture, we applied a method for lineage analysis based on sequence variation in a mitochondrial DNA segment (NcR2). After showing that there was a low probability of doubly uniparental inheritance of mitochondrial DNA in the scallop, we sequenced the NcR2 regions of 914 individuals from 15 populations (13 in Hokkaido and 2 in Aomori). In total, 103 different haplotypes were detected. Results of homogeneity tests for pairwise populations and the fixation indices indicated that significant heterogeneity (P < 0.0005) and structuring (pairwise fixation index F(ST) = 0.1606-0.4444, P = 0.0000; fixation index among groups F(CT) = 0.1549, P = 0.0078) could be inferred between the Hokkaido and Aomori groups, but not among populations within the groups. Moreover, heterogeneity of the haplotype distribution between populations of the 1980s and 1990s or 2000s at the 4 culturing areas was not observed (P > 0.05), and the haplotype diversity between them was not significant (P = 0.05), suggesting that the culture operations had not imparted a significant effect on the genetic structure during these periods.
A 1.3-kb mitochondrial DNA segment from the Japanese scallop Patinopecten yessoensis was cloned and sequenced. This segment contained the transfer RNA(Met) gene and partial sequences of 2 ribosomal RNA genes, together with 2 separate noncoding regions (designated NcR1 and NcR2). The NcR regions derived from 78 individuals cultured in Lake Saroma or Matsu Bay, were sequenced, and we found 15 loci with sequence alterations including 13 substitutions, 1 deletion, and 1 insertion (1 locus in NcR1, 14 loci in NcR2), and 17 haplotypes. Of the 17 haplotypes, 10 were found in the Saroma population only, 3 in the Mutsu population only, and 4 in both populations. The gene diversity and nucleotide diversity values were, respectively, 0.87 and 0.0069 for the Saroma population, 0.63 and 0.0040 for the Mutsu population, and 0.83 and 0.0203 overall. Thus the NcR segment was considered to have sufficient sequence variation for population genetic studies. The 16 variants of the NcR2 sequence were separated successfully by denaturing gradient gel electrophoresis, confirming the sequence variation in NcR2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.