Dust devils are convective vortices with a vertical axis of rotation made visible by lifted soil particles. Currently, there is great uncertainty about the extent to which dust devils contribute to the atmospheric aerosol input and thereby influence Earth's radiation budget. Past efforts to quantify the aerosol transport and study their formation, maintenance, and statistics using large‐eddy simulation (LES) have been of limited success. Therefore, some important features of dust devil‐like vortices simulated with LES still do not compare well with those of observed ones. One major difference is the simulated value of the core pressure drop, which is almost 1 order of magnitude smaller compared to the observed range of 250 to 450 Pa. However, most of the existing numerical simulations are based on highly idealized setups and coarse grid spacings. In this study, we investigate the effects of various factors on the simulated vortex strength with high‐resolution LES. For the fist time, we are able to reproduce observed core pressures by using a high spatial resolution of 2 m, a model setup with moderate background wind and a spatially heterogeneous surface heat flux. It is found that vortices mainly appear at the lines of horizontal flow convergence above the centers of the strongly heated patches, which is in contrast to some older observations in which vortices seemed to be created along the patch edges.
In this study, the scale adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone is investigated. The eddy diffusivity/multiple mass flux [ED(MF)n] scheme is a bin-macrophysics scheme in which subgrid transport is formulated in terms of discretized size densities. While scale adaptivity in the ED component is achieved using a pragmatic blending approach, the MF component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented into a large-eddy simulation (LES) model, replacing the original subgrid scheme for turbulent transport. LES thus plays the role of a nonhydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary layer gray zone. In this range, convective cumulus clouds are partially resolved. The authors find that for quasi-equilibrium marine subtropical conditions at high resolutions, the clouds and the turbulent transport are predominantly resolved by the LES. This partitioning changes toward coarser resolutions, with the representation of shallow cumulus clouds gradually becoming completely carried by the ED(MF)n. The way the partitioning changes with grid spacing matches the behavior diagnosed in coarse-grained LES fields, suggesting that some scale adaptivity is captured. Sensitivity studies show that the scale adaptivity of the ED closure is important and that the location of the gray zone is found to be moderately sensitive to some model constants.
We investigate the potential impact of the local environment on rising parcels in a convective boundary layer. To this end, we use data from an LES simulation of a shallow convective cloud field to feed a parcel model with a range of different local environments, representative of the heterogeneous environment inside a shallow cumulus cloud layer. With this method we can study the statistics of an ensemble of rising parcels, but also the behavior of individual parcels. Through the use of a heterogeneous environment, the interactions between different parcels are indirectly represented. The method, despite its simplicity, allows closer investigation of mechanisms like parcel screening and buoyancy sorting that have frequently been proposed in cumulus parameterization. The relative importance of the entrainment formulation can be assessed, considering various classic entrainment formulations. We found that while the entrainment formulation does affect parcel behavior, the impact of the local environment is significantly more important in determining the eventual fate of the parcel. Using a constant entrainment rate can already explain much of the variation in termination heights seen in nature and LES. The more complex entrainment models then seem to act on top of this mechanism, creating second‐order adaptations in the main distribution as established by the heterogeneity of the environment. A parcel budget analysis was performed for two limit cases, providing more insight into the impact of the local environment on parcel behavior. This revealed that parcel screening inside cumulus clouds can be effective in enabling parcels to reach greater heights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.