The tumor suppressor gene p53 and its family members p63/p73 are critical determinants of tumorigenesis. ΔNp63 is a splice variant of p63, which lacks the N-terminal transactivation domain. It is thought to antagonize p53-, p63- and p73- dependent translation, thus blocking their tumor suppressor activity. In our studies of the pediatric solid tumors neuroblastoma and osteosarcoma, we find overexpression of ΔNp63; however, there is no correlation of ΔNp63 expression with p53 mutation status. Our data suggest that ΔNp63 itself endows cells with a gain of function that leads to malignant transformation, a function independent of any p53 antagonism. Here, we demonstrate that ΔNp63 overexpression, independent of p53, increases secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8), leading to elevated phosphorylation of STAT-3 (Tyr-705). We show that elevated phosphorylation of STAT-3 leads to stabilization of HIF-1α protein, resulting in VEGF secretion. We also show human clinical data, which suggests a mechanistic role for ΔNp63 in osteosarcoma metastasis. In summary, our studies reveal the mechanism by which ΔNp63, as a master transcription factor, modulates tumor angiogenesis.
Background: mTORC1 integrates cellular inputs and is often deregulated in cancer.Results: In response to DNA damage, p53/TAp63 and AKT regulate mTORC1 through two independent parallel pathways.Conclusion: DNA damage activates Akt, resulting in inhibition of S6K1, whereas Sestrin1/2 downstream of p53 and REDD1 downstream of p63 coordinate to suppress 4E-BP1.Significance: mTORC1-dependent 4EBP1 inhibition by DNA damage is abrogated in most human cancers.
Osteosarcoma (OS), a malignant tumor of bone, kills through aggressive metastatic spread almost exclusively to the lung. Mechanisms driving this tropism for lung tissue remain unknown, though likely invoke specific interactions between tumor cells and other cells within the lung metastatic niche. Aberrant overexpression of ΔNp63 in OS cells directly drives production of IL-6 and CXCL8. All these factors were expressed at higher levels in OS lung metastases than in matched primary tumors from the same patients. Expression in cell lines correlated strongly with lung colonization efficiency in murine xenograft models. Lentivirus-mediated expression endowed poorly metastatic OS cells with increased metastatic capacity. Disruption of IL-6 and CXCL8 signaling using genetic or pharmaceutical inhibitors had minimal effects on tumor cell proliferation in vitro or in vivo, but combination treatment inhibited metastasis across multiple models of metastatic OS. Strong interactions occurred between OS cells and both primary bronchial epithelial cells and bronchial smooth muscle cells that drove feed-forward amplification of IL-6 and CXCL8 production. These results identify IL-6 and CXCL8 as primary mediators of OS lung tropism and suggest pleiotropic, redundant mechanisms by which they might effect metastasis. Combination therapy studies demonstrate proof of concept for targeting these tumor-lung interactions to affect metastatic disease.
Ewing sarcoma (EWS) is the second most common and aggressive type of metastatic bone tumor in adolescents and young adults. There is unmet medical need to develop and test novel pharmacological targets and novel therapies to treat EWS. Here, we found that EWS expresses high levels of a p53 isoform, delta133p53. We further determined that aberrant expression of delta133p53 induced HGF secretion resulting in tumor growth and metastasis. Thereafter, we evaluated targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in preclinical studies. Surprisingly, we found that targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in combination with GD2‐specific, CAR‐reengineered T‐cell therapy synergistically inhibited primary tumor growth and establishment of metastatic disease in preclinical models. Furthermore, our data suggested that AMG102 treatment alone might increase leukocyte infiltration including efficient CAR‐T access into tumor mass and thereby improves its antitumor activity. Together, our findings warrant the development of novel CAR‐T‐cell therapies that incorporate HGF receptor neutralizing antibody to improve therapeutic potency, not only in EWS but also in tumors with aberrant activation of the HGF/c‐MET pathway.
p63 is a structural homolog within the 53 family encoding two isoforms, ΔNp63 and TAp63. The oncogenic activity of ΔNp63 has been demonstrated in multiple cancers, however the underlying mechanisms that contribute to tumorigenesis are poorly characterized. Osteosarcoma (OSA) is the most common primary bone tumor in dogs, exhibiting clinical behavior and molecular biology essentially identical to its human counterpart. The purpose of this study was to evaluate the potential contribution of ΔNp63 to the biology of canine OSA. As demonstrated by qRT-PCR, nearly all canine OSA cell lines and tissues overexpressed ΔNp63 relative to normal control osteoblasts. Inhibition of ΔNp63 by RNAi selectively induced apoptosis in the OSA cell lines overexpressing ΔNp63. Knockdown of ΔNp63 upregulated expression of the proapoptotic Bcl-2 family members Puma and Noxa independent of p53. However the effects of ΔNp63 required transactivating isoforms of p73, suggesting that ΔNp63 promotes survival in OSA by repressing p73-dependent apoptosis. In addition, ΔNp63 modulated angiogenesis and invasion through its effects on VEGF-A and IL-8 expression, and STAT3 phosphorylation. Lastly, the capacity of canine OSA cell lines to form pulmonary metastasis was directly related to expression levels of ΔNp63 in a murine model of metastatic OSA. Together, these data demonstrate that ΔNp63 inhibits apoptosis and promotes metastasis, supporting continued evaluation of this oncogene as a therapeutic target in both human and canine OSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.