The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor with multiple ligands that is known to play a key role in several diseases, including diabetes, arthritis, and Alzheimer's disease. Recent evidence indicates that this receptor also has an important role in cancer. RAGE ligands, which include the S100/calgranulins and high-mobility group box 1 (HMGB1) ligands, are expressed and secreted by cancer cells and are associated with increased metastasis and poorer outcomes in a wide variety of tumors. These ligands can interact in an autocrine manner to directly activate cancer cells and stimulate proliferation, invasion, chemoresistance, and metastasis. RAGE ligands derived from cancer cells can also influence a variety of important cell types within the tumor microenvironment, including fibroblasts, leukocytes, and vascular cells, leading to increased fibrosis, inflammation, and angiogenesis. Several of the cells in the tumor microenvironment also produce RAGE ligands. Most of the cancer-promoting effects of RAGE ligands are the result of their interaction with RAGE. However, these ligands also often have separate intracellular roles, and some may interact with other extracellular targets, so it is not currently possible to assign all of their effects to RAGE activation. Despite these complications, the bulk of the evidence supports the premise that the ligand-RAGE axis is an important target for therapeutic intervention in cancer.
These data indicate that S100P is expressed at greater levels in colon cancer than matched normal tissue and that S100P stimulates colon cancer cell growth, migration, Erk phosphorylation, and NFkappaB activation in vitro, suggesting that this ligand/receptor pair may be targeted for the development of new therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.