Post combustion CO2 capture using amines as chemical absorbents is a relatively mature technology. Rate of reaction and desorption energy demand are normally prime criteria for evaluation of new solvents while degradation and corrosion studies are often postponed. However, degradation and corrosion are in many cases showstoppers and should be considered at an early stage. In this work, a systematic study has been conducted on oxidative degradation of 30 wt% ethanolamine (MEA) for oxygen concentrations: 6, 21, 49 and 98% and temperatures: 55, 65 and 75 °C. The formation of ten primary degradation compounds (acids, ammonia and alkyl amines) and seven secondary degradation compounds (HEGly, OZD, HEPO, HEF, HEA, HEI and BHEOX was monitored as function of time over a period of 3 -6 weeks. The full comprehensive data set is available in the supplementary information for development of models describing the degradation behavior. Suggested mechanisms for formation of seven secondary degradation compounds; HEGly, HEPO, OZD, HEF, HEA, BHEOX and HEI from literature were compiled and discussed in view of the experimental results to suggest pathways which are more likely than others.The rate of MEA degradation increases with increasing temperature and oxygen concentration. The overall nitrogen balances were closed within 83-97%; the higher deviations observed at the highest temperature, 75 o C. HEF, HEI and ammonia were the degradation compounds that most significantly contributed to the nitrogen balance in most experiments. However, at 6% O2 content, HEGly was the major nitrogen containing degradation compound identified. Formate was found to be the major anionic compound in all experiments.HEGly formation was found to be independent on O2 partial pressure, but this may not be true for the further reaction of HEGly. The results suggests OZD formation to be oxygen dependent. However, only one mechanism is so far suggested for an oxygen dependent pathway. Both OZD and HEPO concentrations increase with oxygen concentration. Separate laboratory experiments at constant temperature (55-75 o C) do not capture the HEPO formation seen in pilot plant samples indicating that higher temperatures and/or temperature cycles are necessary.The results clearly show that performing accelerated degradation tests with 98% oxygen cannot easily be extrapolated to what happens at 6% oxygen, and therefore may not be representative for the situation in an industrial plant both with regard to rates of formation and products formed.
Liquid phase degradation of MEA and the formation of 8 degradation compounds were studied at 4 different oxygen concentrations and three different temperatures. Liquid phase total nitrogen was determined and compared with quantified remaining MEA and degradation compounds. The first order rate constant for MEA degradation was determined and found to increase with both oxygen concentration and temperature. Temperature and oxygen dependence of the degradation compounds were complex. In particular the behaviour at 6% oxygen level was interesting. The end sample liquid phase nitrogen balance is almost closed at 6% O 2 . The nitrogen accounted for decreases with increasing temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.