Perturbants of the endoplasmic reticulum (ER), including Ca(2+)-mobilizing agents, provoke a rapid suppression of translational initiation in conjunction with an increased phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF)-2. Depletion of ER Ca2+ stores was found to signal the activation of a specific eIF-2 alpha kinase. Analysis of extracts derived from cultured cells that had been pretreated with Ca2+ ionophore A23187 or thapsigargin revealed a 2-3-fold increase in eIF-2 alpha kinase activity without detectable changes in eIF-2 alpha phosphatase activity. A peptide of 65-68 kDa, which was phosphorylated concurrently with eIF-2 alpha in extracts of pretreated cells, was identified as the interferon-inducible, double-stranded RNA (dsRNA)-regulated protein kinase (PKR). Depletion of ER Ca2+ stores did not alter the PKR contents of extracts. When incubated with reovirus dsRNA, extracts derived from cells with depleted ER Ca2+ stores displayed greater degrees of phosphorylation of PKR and of eIF-2 alpha than did control extracts. The enhanced dsRNA-dependent phosphorylation of PKR was observed regardless of prior induction of the kinase with interferon. Lower concentrations of dsRNA were required for maximal phosphorylation of PKR in extracts of treated as compared to control preparations. These findings suggest that PKR mediates the translational suppression occurring in response to perturbation of ER Ca2+ homeostasis.
Thapsigargin, a tumour-promoting sesquiterpene lactone, selectively inhibits the Ca(2+)-ATPase responsible for Ca2+ accumulation by the endoplasmic reticulum (ER). Mobilization of ER-sequestered Ca2+ to the cytosol and to the extracellular fluid subsequently ensues, with concomitant alteration of cellular functions. Thapsigargin was found to serve as a rapid, potent and efficacious inhibitor of amino acid incorporation in cultured mammalian cells. At concentrations mobilizing cell-associated Ca2+ to the extracellular fluid, thapsigargin provoked extensive inhibition of protein synthesis within 10 min. The inhibition in GH3 pituitary cells involved the synthesis of almost all polypeptides, was not associated with increased cytosolic free Ca2+ concentration ([Ca2+]i), and was not reversed at high extracellular Ca2+. The transient rise in [Ca2+]i triggered by ionomycin was diminished by thapsigargin. Polysomes failed to accumulate in the presence of the drug, indicative of impaired translational initiation. With longer (1-3 h) exposures to thapsigargin, recovery of translational activity was observed accompanied by increased synthesis of the ER protein glucose-regulated stress protein 78 or immunoglobulin heavy-chain binding protein ('GRP78/BiP') and its mRNA. Such inductions were comparable with those observed previously with Ca2+ ionophores which mobilize the cation from all intracellular sequestered sites. Actin mRNA concentrations declined significantly during such treatments. In HepG2 cells processing and secretion of the glycoprotein alpha 1-antitrypsin were rapidly suppressed by thapsigargin. Ca2+ sequestered specifically by the ER is concluded to be essential for optimal protein synthesis and processing. These rapid effects of thapsigargin on mRNA translation, protein processing and gene expression should be considered when evaluating potential mechanisms by which this tumour promoter influences cellular events.
The role of GRP78/BiP in coordinating endoplasmic reticular (ER) protein processing with mRNA translation was examined in GH 3 pituitary cells. ADP-ribosylation of GRP78 and eukaryotic initiation factor (eIF)-2␣ phosphorylation were assessed, respectively, as indices of chaperone inactivation and the inhibition of translational initiation. Inhibition of protein processing by ER stress (ionomycin and dithiothreitol) resulted in GRP78 deribosylation and eIF-2 phosphorylation. Suppression of translation relative to ER protein processing (cycloheximide) produced approximately 50% ADP-ribosylation of GRP78 within 90 min without eIF-2 phosphorylation. ADP-ribosylation was reversed in 90 min by cycloheximide removal in a manner accelerated by ER stressors. Cycloheximide sharply reduced eIF-2 phosphorylation in response to ER stressors for about 30 min; sensitivity returned as GRP78 became increasingly ADP-ribosylated. Reduced sensitivity of eIF-2 to phosphorylation appeared to derive from the accumulation of free, unmodified chaperone as proteins completed processing without replacements. Prolonged (24 h) incubations with cycloheximide resulted in the selective loss of the ADP-ribosylated form of GRP78 and increased sensitivity of eIF-2 phosphorylation in response to ER stressors. Brefeldin A decreased ADP-ribosylation of GRP78 in parallel with increased eIF-2 phosphorylation. The cytoplasmic stressor, arsenite, which inhibits translational initiation through eIF-2 phosphorylation without affecting the ER, also produced ADP-ribosylation of GRP78.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.