BackgroundGermline genetic testing with hereditary cancer gene panels can identify women at increased risk of breast cancer. However, those at increased risk of triple-negative (estrogen receptor–negative, progesterone receptor–negative, human epidermal growth factor receptor–negative) breast cancer (TNBC) cannot be identified because predisposition genes for TNBC, other than BRCA1, have not been established. The aim of this study was to define the cancer panel genes associated with increased risk of TNBC.MethodsMultigene panel testing for 21 genes in 8753 TNBC patients was performed by a clinical testing laboratory, and testing for 17 genes in 2148 patients was conducted by a Triple Negative Breast Cancer Consortium (TNBCC) of research studies. Associations between deleterious mutations in cancer predisposition genes and TNBC were evaluated using results from TNBC patients and reference controls.ResultsGermline pathogenic variants in BARD1, BRCA1, BRCA2, PALB2, and RAD51D were associated with high risk (odds ratio > 5.0) of TNBC and greater than 20% lifetime risk for overall breast cancer among Caucasians. Pathogenic variants in BRIP1, RAD51C, and TP53 were associated with moderate risk (odds ratio > 2) of TNBC. Similar trends were observed for the African American population. Pathogenic variants in these TNBC genes were detected in 12.0% (3.7% non-BRCA1/2) of all participants.ConclusionsMultigene hereditary cancer panel testing can identify women with elevated risk of TNBC due to mutations in BARD1, BRCA1, BRCA2, PALB2, and RAD51D. These women can potentially benefit from improved screening, risk management, and cancer prevention strategies. Patients with mutations may also benefit from specific targeted therapeutic strategies.
In early-stage TNBC, nodal involvement, TILs, and receipt of adjuvant chemotherapy were independently associated with IDFS and OS. In systemically untreated TNBC, TILs remained prognostic and the risk of recurrence or death was substantial, even for T1N0 disease.
ObjectivesHealth disparities between individuals of African and European ancestry are well documented. The disparities in bipolar disorder may be driven by racial bias superimposed on established factors contributing to misdiagnosis, including: evolving empirically based diagnostic criteria (International Classification of Diseases [ICD], Research Diagnostic Criteria [RDC] and Diagnostic and Statistical Manual [DSM]), multiple symptom domains (i.e. mania, depression and psychosis), and multimodal medical and additional psychiatric comorbidity.MethodsFor this paper, we reviewed the phenomenological differences between bipolar individuals of African and European ancestry in the context of diagnostic criteria and clinical factors that may contribute to a potential racial bias.ResultsPublished data show that bipolar persons of African ancestry, compared with bipolar persons of non‐African ancestry, are more often misdiagnosed with a disease other than bipolar disorder (i.e. schizophrenia). Additionally, studies show that there are disparities in recruiting patients of African ancestry to participate in important genomic studies. This gap in biological research in this underrepresented minority may represent a missed opportunity to address potential racial differences in the risk and course of bipolar illness.ConclusionA concerted effort by the research community to increase inclusion of diverse persons in studies of bipolar disorder through community engagement may facilitate fully addressing these diagnostic and treatment disparities in bipolar individuals of African ancestry.
Approximately 75% of breast cancers express estrogen receptor α (ERα) and depend on estrogen signals for continued growth. Aromatase inhibitors (AIs) prevent estrogen production and inhibit estrogen receptor signaling, resulting in decreased cancer recurrence and mortality. Advanced tumors treated with AIs almost always develop resistance to these drugs via the up-regulation of alternative growth signals. The mechanisms that drive this resistance—especially epigenetic events that alter gene expression—are however not well understood. Genome-wide DNA methylation and expression analysis of cell line models of acquired aromatase inhibitor resistance indicated that prostaglandin E2 receptor 4 (PTGER4) is up-regulated after demethylation in resistant cells. Knockdown and inhibitor studies demonstrate that PTGER4 is essential for estrogen independent growth. Our exploratory analysis of downstream signaling indicates that PTGER4 likely promotes AI resistance via ligand independent activation of the ERα-cofactor CARM1. We believe that we have discovered a novel epigenetic mechanism for altering cell signaling and acquiring endocrine therapy resistance. Our findings indicate that PTGER4 is a potential drug target in AI resistant cancers. Additionally, the epigenetic component of PTGER4 regulation suggests that further study of PTGER4 may yield valuable insights into how DNA methylation-targeted diagnoses and treatments can improve AI resistant breast cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.