Variograms are important tools in the spatial distribution of facies and petrophysical properties. Due to the scarcity of subsurface well data, both spatially and quantity wise, variograms representing the data tend to have a lot of uncertainties. In order to reduce uncertainty in variograms, well data can be supplemented with the geological knowledge of the reservoir. This has been demonstrated by various authors in previous works. In their paper "Methodology to Incorporate Geological Knowledge in Variogram Modeling," A. Bahar and M. Kelkar introduced a methodology to incorporate geological knowledge by studying the energy level of the depositional environment and grain texture. They used these two attributes to determine the relative distance of continuity of the lithofacies and incorporated it in the variogram modeling. In this paper, we introduce another attribute that determines the continuity of lithofacies; the accommodation or deposition space. For illustration purpose, two sets of facies models were constructed: The first using subsurface well data only and the second using well data and geological information of the reservoir. The two sets of models showed significant variation in the property distribution. The first set gave a more random appearance of the facies distribution while the second set gave a more realistic depiction of the depositional environment of the reservoir. We concluded that other than the grain size and the energy level of the depositional environment, another important determinant for continuity in variograms is the knowledge of the depositional space. Incorporating the knowledge of the depositional environment enabled a more accurate estimation of the variogram parameters. This resulted in an improvement in the accuracy of the model.
This paper presents a three-dimensional geological reservoir model created using stochastic simulation. The oil field presented is an East African oil field formed by a structural trap. Data analysis and transformations were conducted on the properties before simulation. The variogram was used to measure the spatial correlation of cell-based facies modeling, and porosity and permeability modeling. Two main lithologies were modelled using sequential indicator simulation, sand and shale. Sand had a percentage of 26.8% and shale of 73.2%. There was a clear property distribution trend of sand and shale from the southwest to the northeastern part of a reservoir. The distribution trend of the facies resembled the proposed depositional model of the reservoir. Simulations show that average porosity and permeability of the reservoir are about 20% and 1004 mD, respectively. Average water saturation was 64%. STOIIP volume of 689.42 MMbbls was calculated. The results of simulation showed that the south eastern part of the reservoir holds higher volumes of oil. In conclusion, the model gave a better geological understanding of the geology of the area and can be used for decision making about the future development of the reservoir, prediction performance and uncertainty analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.