The preatmospheric mass of the Tagish Lake meteoroid was about 200,000 kilograms. Its calculated orbit indicates affinity to the Apollo asteroids with a semimajor axis in the middle of the asteroid belt, consistent with a linkage to low-albedo C, D, and P type asteroids. The mineralogy, oxygen isotope, and bulk chemical composition of recovered samples of the Tagish Lake meteorite are intermediate between CM and CI meteorites. These data suggest that the Tagish Lake meteorite may be one of the most primitive solar system materials yet studied.
Abstract-Two-station electro-optical observations of the 1998 Leonid shower are presented. Precise heights and light curves were obtained for 79 Leonid meteors that ranged in brightness (at maximum luminosity) from +0.3 to +6.1 astronomical magnitude. The mean photometric mass of the data sample was 1.4 x 1@ kg. The dependence of astronomical magnitude at peak luminosity on photometric mass and zenith angle was consistent with earlier studies of faint sporadic meteors. For example, a Leonid meteoroid w i t h a photometric mass of -1.0 x 10-7 kg corresponds to a peak meteor luminosity of about +4.5 astronomical magnitudes. The mean beginning height of the Leonid meteors in this sample was 112.6 km and the mean ending height was 95.3 km. The highest beginning height observed was 144.3 km. There is relatively little dependence of either the first or last heights on mass, which is indicative of meteoroids that have clustered into constituent grains prior to the onset of intensive grain ablation. The height distribution, combined with numerical modelling of the ablation of the meteoroids, suggests that silicate-like materials are not the principal component of Leonid meteoroids and hints at the presence of a more volatile component. Light curves of many Leonid meteors were examined for evidence of the physical structure of the associated meteoroids: similar to the 1997 Leonid meteors, the narrow, nearly symmetric curves imply that the meteoroids are not solid objects. The light curves are consistent with a dustball structure.
We report here evidence for significant transverse spread of the light production region in bright Leonid meteors. One Leonid meteor has an apparent spread in the light production region of about 600 m perpendicular to the flight path for the meteor, that transverse spread persisting for at least 0.3 s. We have also detected short‐duration, jet‐like features emanating from a bright Leonid meteor recorded in 1998. These jet‐like features have maximum spatial dimensions up to 1.9 km. While we cannot definitively rule out instrumental artefacts as a cause for these jet‐like features, they may be evidence of motion contributing to the observed spatial spread in the light production region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.