Peptide neuromodulation has been implicated to shield neuronal activity from acute temperature changes that can otherwise lead to loss of motor control or failure of vital behaviors. However, the cellular actions neuropeptides elicit to support temperature-robust activity remain unknown. Here, we find that peptide neuromodulation restores rhythmic bursting in temperature-compromised central pattern generator (CPG) neurons by counteracting membrane shunt and increasing dendritic electrical spread. We show that acutely rising temperatures reduced spike generation and interrupted ongoing rhythmic motor activity in the crustacean gastric mill CPG. Neuronal release and extrinsic application of Cancer borealis tachykininrelated peptide Ia (CabTRP Ia), a substance-P-related peptide, restored rhythmic activity. Warming led to a significant decrease in membrane resistance and a shunting of the dendritic signals in the main gastric mill CPG neuron. Using a combination of fluorescent calcium imaging and electrophysiology, we observed that postsynaptic potentials and antidromic action potentials propagated less far within the dendritic neuropil as the system warmed. In the presence of CabTRP Ia, membrane shunt decreased and both postsynaptic potentials and antidromic action potentials propagated farther. At elevated temperatures, CabTRP Ia restored dendritic electrical spread or extended it beyond that at cold temperatures. Selective introduction of the CabTRP Ia conductance using a dynamic clamp demonstrated that the CabTRP Ia voltage-dependent conductance was sufficient to restore rhythmic bursting. Our findings demonstrate that a substance-P-related neuropeptide can boost dendritic electrical spread to maintain neuronal activity when perturbed and reveals key neurophysiological components of neuropeptide actions that support pattern generation in temperature-compromised conditions.
Spinal cord stimulation modulates expression of key pain-related genes in the DRG. Specifically, SCS led to reversal of IL-1b and IL-6 expression induced by injury. Interleukin 6 expression was still significantly larger than in sham animals, which may correlate to residual sensitivity following continuous SCS treatment. In addition, expression of GABAbr1 and Na/K ATPase was down-regulated to within control levels following SCS and correlates with applied current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.