The effectiveness and safety of a group aquatic aerobic exercise program on cardiorespiratory endurance for children with disabilities was examined using an A-B study design. Sixteen children (11 males, five females) age range 6 to 11 years (mean age 9y 7mo [SD 1y 4mo]) participated in this twice-per-week program lasting 14 weeks. The children's diagnoses included autism spectrum disorder, myelomeningocele, cerebral palsy, or other developmental disability. More than half of the children ambulated independently without aids. Children swam laps and participated in relay races and games with a focus of maintaining a defined target heart rate zone. The strengthening component consisted of exercises using bar bells, aquatic noodles, and water resistance. The following outcomes were measured: half-mile walk ⁄ run, isometric muscle strength, timed floor to stand 3-meter test, and motor skills. Complaints of pain or injury were systematically collected. Significant improvements in the half-mile walk ⁄ run were observed, but not for secondary outcomes of strength or motor skills. The mean program attendance was 80%, and no injury was reported. Children with disabilities may improve their cardiorespiratory endurance after a group aquatic aerobic exercise program with a high adult:child ratio and specific goals to maintain training heart rates.Over the past decade, increasing attention has focused on the importance of physical fitness in the promotion of health in children. Cardiorespiratory endurance is a component of health-related physical fitness and it is dependent on the function of the respiratory, cardiovascular, and skeletal muscle systems. Children with cerebral palsy (CP), Down syndrome, myelomeningocele, and autism spectrum disorders typically have decreased cardiorespiratory endurance, muscle strength, balance, coordination, and motor skills.
With measurement of physical activity becoming more common in clinical practice, it is imperative that healthcare professionals become more knowledgeable about the different methods available to objectively measure physical activity behaviour. Objective measures do not rely on information provided by the patient, but instead measure and record the biomechanical or physiological consequences of performing physical activity, often in real time. As such, objective measures are not subject to the reporting bias or recall problems associated with self-report methods. The purpose of this article was to provide an overview of the different methods used to objectively measure physical activity in clinical practice. The review was delimited to heart rate monitoring, accelerometers and pedometers since their small size, low participant burden and relatively low cost make these objective measures appropriate for use in clinical practice settings. For each measure, strengths and weakness were discussed; and whenever possible, literature-based examples of implementation were provided.
BackgroundCerebral palsy (CP) is the most common physical disability among children (2.5 to 3.6 cases per 1000 live births). Inadequate physical activity (PA) is a major problem effecting the health and well-being of children with CP. Practical, yet accurate measures of PA are needed to evaluate the effectiveness of surgical and therapy-based interventions to increase PA. Accelerometer-based motion sensors have become the standard for objectively measuring PA in children and adolescents; however, current methods for estimating physical activity intensity in children with CP are associated with significant error and may dramatically underestimate HPA in children with more severe mobility limitations. Machine learning (ML) models that first classify the PA type and then predict PA intensity or energy expenditure using activity specific regression equations may be more accurate than standalone regression models. However, the feasibility and validity of ML methods has not been explored in youth with CP. Therefore, the purpose of this study was to develop and test ML models for the automatic identification of PA type in ambulant children with CP.MethodsTwenty two children and adolescents (mean age: 12.8 ± 2.9 y) with CP classified at GMFCS Levels I to III completed 7 activity trials while wearing an ActiGraph GT3X+ accelerometer on the hip and wrist. Trials were categorised as sedentary (SED), standing utilitarian movements (SUM), comfortable walking (CW), and brisk walking (BW). Random forest (RF), support vector machine (SVM), and binary decision tree (BDT) classifiers were trained with features extracted from the vector magnitude (VM) of the raw acceleration signal using 10 s non-overlapping windows. Performance was evaluated using leave-one-subject out cross validation.ResultsSVM (82.0–89.0%) and RF (82.6–88.8%) provided significantly better classification accuracy than BDT (76.1–86.2%). Hip (82.7–85.5%) and wrist (76.1–82.6%) classifiers exhibited comparable prediction accuracy, while the combined hip and wrist (86.2–89.0%) classifiers achieved the best overall performance. For all classifiers, recognition accuracy was excellent for SED (94.1–97.9%), good to excellent for SUM (74.0–96.6%) and brisk walking (71.5–86.0%), and modest for comfortable walking (47.6–70.4%). When comfortable and brisk walking were combined into a single walking class, recognition accuracy ranged from 90.3 to 96.5%.ConclusionsML methods provided acceptable classification accuracy for detection of a range of activities commonly performed by ambulatory children with CP. The resultant models can help clinicians more effectively monitor bouts of brisk walking in the community. The results indicate that 2-step models that first classify PA type and then predict energy expenditure using activity specific regression equations are worthy of exploration in this patient group.Electronic supplementary materialThe online version of this article (10.1186/s12984-018-0456-x) contains supplementary material, which is available to authorized users.
Findings suggest that mothers perceive that physical therapists are using family-centered behaviors in early intervention. Findings from the questionnaires suggest that some early intervention policies may be barriers for therapists and prevent them from actualizing attitudes toward family-centered behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.