Inorganic manganese based particles are becoming attractive for molecular and cellular imaging, due to their ability to provide bright contrast on MRI, as opposed to the dark contrast generated from iron based particles. Using a single emulsion technique, we have successfully fabricated pH sensitive, poly(lactic-co-glycolic acid) (PLGA) encapsulated manganese oxide (MnO) nanocrystals. Two classes of particles were fabricated at ~ 140 nm and 1.7 μm, and incorporated 15 to 20 nm MnO nanocrystals with high encapsulation efficiencies. Intact particles at physiological pH cause little contrast in MRI, but following endocytosis into low pH compartments within the cells, the particles erode, and MnO dissolves to release Mn2+. This causes the cells to appear bright on MR images. The magnitude of the change in MRI properties is as high as 35-fold, making it the most dynamic ‘smart’ MRI contrast agent yet reported. Possible applications of these MnO particles include slow release Mn2+, tumor targeting, and confirmation of cell uptake.
The formation of neutrophil extracellular traps (NETs), known as NETosis, was first observed as a novel immune response to bacterial infection, but has since been found to occur abnormally in a variety of other inflammatory disease states including cancer. Breast cancer is the most commonly diagnosed malignancy in women. In breast cancer, NETosis has been linked to increased disease progression, metastasis, and complications such as venous thromboembolism. NET-targeted therapies have shown success in preclinical cancer models and may prove valuable clinical targets in slowing or halting tumor progression in breast cancer patients. We will briefly outline the mechanisms by which NETs may form in the tumor microenvironment and circulation, including the crosstalk between neutrophils, tumor cells, endothelial cells, and platelets as well as the role of cancer-associated extracellular vesicles in modulating neutrophil behavior and NET extrusion. The prognostic implications of cancer-associated NETosis will be explored in addition to development of novel therapeutics aimed at targeting NET interactions to improve outcomes in patients with breast cancer.
Epilepsy results from aberrant electrical activity that can affect either a focal area or the entire brain. In treating epilepsy with drugs, the aim is to decrease seizure frequency and severity while minimizing toxicity to the brain and other tissues. Antiepileptic drugs (AEDs) are usually administered by oral and intravenous (IV) routes, but these drug treatments are not always effective. Drug access to the brain is severely limited by a number of biological factors, particularly the blood-brain barrier (BBB), which impedes the ability of AEDs to enter and remain in the brain. To improve the efficacy of AEDs, new drug delivery strategies are being developed; these methods fall into the three main categories: drug modification, BBB modification, and direct drug delivery. Recently, all three methods have been improved through the use of drug-loaded nanoparticles.
Rationale: Intraerythrocytic polymerization of Hb S promotes hemolysis and vasoocclusive events in the microvasculature of patients with sickle cell disease (SCD). Although plateletneutrophil aggregate-dependent vasoocclusion is known to occur in the lung and contribute to acute chest syndrome, the etiological mechanisms that trigger acute chest syndrome are largely unknown.Objectives: To identify the innate immune mechanism that promotes platelet-neutrophil aggregate-dependent lung vasoocclusion and injury in SCD.Methods: In vivo imaging of the lung in transgenic humanized SCD mice and in vitro imaging of SCD patient blood flowing through a microfluidic system was performed. SCD mice were systemically challenged with nanogram quantities of LPS to trigger lung vasoocclusion.Measurements and Main Results: Platelet-inflammasome activation led to generation of IL-1b and caspase-1-carrying platelet extracellular vesicles (EVs) that bind to neutrophils and promote platelet-neutrophil aggregation in lung arterioles of SCD mice in vivo and SCD human blood in microfluidics in vitro. The inflammasome activation, platelet EV generation, and platelet-neutrophil aggregation were enhanced by the presence of LPS at a nanogram dose in SCD but not control human blood. Inhibition of the inflammasome effector caspase-1 or IL-1b pathway attenuated platelet EV generation, prevented platelet-neutrophil aggregation, and restored microvascular blood flow in lung arterioles of SCD mice in vivo and SCD human blood in microfluidics in vitro.Conclusions: These results are the first to identify that plateletinflammasome-dependent shedding of IL-1b and caspase-1carrying platelet EVs promote lung vasoocclusion in SCD. The current findings also highlight the therapeutic potential of targeting the platelet-inflammasome-dependent innate immune pathway to prevent acute chest syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.