Chronic treatment with the selective adenosine A 3 receptor agonist N 6 -(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (IB-MECA) administered prior to either 10 or 20 min forebrain ischemia in gerbils resulted in improved postischemic cerebral blood circulation, survival, and neuronal preservation. Opposite effects, i.e., impaired postischemic blood flow, enhanced mortality, and extensive neuronal destruction in the hippocampus were seen when IB-MECA was given acutely. Neither adenosine A 1 nor A 2 receptors are involved in these actions. The data indicate that stimulation of adenosine A 3 receptors may play an important role in the development of ischemic damage, and that adenosine A 3 receptors may offer a new target for therapeutic interventions.
The effect of chronic administration of selective adenosine A1 receptor agonists and antagonists on the outcome of cerebral ischemia is entirely unknown. Therefore, we have investigated the impact of such regimens on the hippocampal adenosine A1 receptor density, and on the recovery from 10 min forebrain ischemia in gerbils. While acutely administered N6-cyclopentyladenosine (CPA) given at 0.02 mg/kg resulted only in a significant reduction of mortality, at 1 mg/kg it improved both survival and neuronal preservation in the hippocampal CA1 region. Acute treatment with 1,3-dipropyl-8-cyclopentylxanthine (CPX) significantly worsened the outcome and enhanced neuronal destruction. The effects of chronic administration of these drugs (15 days followed by 1 drug-free day) were opposite. Thus, although chronic CPA at 0.02 mg/kg did not have any effect at all, at 1 mg/kg both survival and neuronal preservation were significantly poorer than in controls, while chronic CPX resulted in a significant improvement of both measures. These results were not accompanied by adenosine A1 receptor up- or downregulation. Our study indicates that highly selective adenosine analogues may have therapeutic potential in treatment of cerebral ischemia/stroke and possibly other neurodegenerative disorders as well.
Agonists of adenosine A1 receptors have been frequently proposed as candidates for clinical development in treatment of cerebral ischemia and stroke. Numerous experimental studies have shown that pre- and postischemic administration of these drugs results in a very significant reduction of postischemic brain damage. However, only a few studies determined the impact of cerebral ischemia and drug treatment on postischemic recovery of spatial memory. The present paper demonstrates that preischemic i.p. administration of adenosine amine congener (ADAC) at 100 micrograms/kg in gerbils results in a significant (P < 0.05) reduction of postischemic mortality and hippocampal, cortical and striatal morbidity. Postischemic Morris' water maze tests show that preischemic treatment with ADAC also leads to a very significant (P < 0.001) reduction of postischemic spatial memory loss. Our results indicate feasibility of further consideration of adenosine A1 receptor agonists as a clinically applicable acute treatment of brain ischemia. Recent development of neuroprotective adenosine A1 receptor agonists that are free of cardiovascular side effects supports such development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.