Abstract. Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, fourdimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acousticbased mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry.This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.
The MAREANO (Marine AREA database for NOrwegian coast and sea areas) mapping programme includes acquisition of multibeam bathymetry and backscatter data together with a comprehensive, integrated biological and geological sampling programme. Equipment used includes underwater video, box corer, grab, epibenthic sled and beam trawl. Habitat maps are produced by combining information on landscapes, landscape elements, sediment types and biological communities. Video observations provide information about the megafauna diversity of large ([1 cm) epifauna and bottom types, whilst bottom samples describe the composition of epifauna, hyperfauna (crustaceans living in the upper part of the sediment and/or swimming just above the substratum) and infauna, and sediment composition. In this study, two biological data sets are used to study fauna response to environmental heterogeneity at two different spatial scales: (1) broad scale, megahabitat (1-10s km), based on information about megafauna taxa observed during video surveys in the Nordland/ Troms area, (2) fine scale, mesohabitat (10s m-1 km), based on information about species composition documented with video records and bottom sampling gear from the bank ''Tromsøflaket''. In general, the highest diversity is found on bottoms with mixed substrates indicating that substratum heterogeneity is very important for the biodiversity at both scales. The number of taxa shows a maximum at depths between 200 and 700 m followed by a gradual decrease down to 2,200 m. At the broad scale, multibeam data provides a variety of terrain variables that indicate environmental variation (e.g. exposure to currents, interpreted substrates). This analysis identifies six fauna groups associated to specific landscape elements. Diversity of megafauna shows a strong correlation with number of bottom types occurring along video transects. It is highest at the shelf break and decreased with depth on the slope in parallel with a decrease in habitat heterogeneity and temperature. At a fine scale, six biotopes are identified based on megafauna composition with habitat characteristics ranging from homogenous muddy bottom, biotope 1, to the most heterogeneous bottom with [20% rocks and several bottom types present in biotope 6. The macrofauna 123Hydrobiologia ( ) 685:191-219 DOI 10.1007 sampled is used for description of the whole benthic community, including diversity, biomass and production, related to these six biotopes. The variation in percentage cover of substrate types and in particular the cover of hard substrates demonstrate to be a good proxy for the benthic community composition (megaand macrofauna) and its diversity.
Cold-water coral distributions are only partially understood even in the most wellstudied areas. This is partly due to the only recent development of appropriate technology, and partly to the high cost and time associated with coral mapping, particularly in deep water. One way to optimise mapping is to develop predictive habitat models as proxies for the actual distribution of corals. These models may provide objective criteria for the selection of prioritised coral mapping areas. In this study, we quantified the relationship between observed cold-water coral distribution and terrain attributes as an important step in developing predictive habitat models. We estimated deep-water coral percentage cover from remotely operated vehicle video and demonstrate how such data can be used to examine quantitative relations between coral cover and terrain parameters (slope, aspect, rugosity and bathymetric position index) derived from ship-borne multibeam swath acoustic data. We show that, at carbonate mound provinces within sites on the Irish margin, coral abundance is correlated with terrain that is strongly sloping and irregular to a varying degree, depending on spatial scale. It is likely that terrain variations influence the hydrodynamic setting, resulting in a varying food supply. A similar approach may be applicable for other fauna in a variety of benthic environments. KEY WORDS: Habitat mapping · Terrain analysis · Remotely operated vehicle · Carbonate moundsResale or republication not permitted without written consent of the publisher OPEN PEN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.