The initial observation of an expanded and unstable trinucleotide repeat in the Huntington's disease gene has now been confirmed and extended in 150 independent Huntington's disease families. HD chromosomes contained 37-86 repeat units, whereas normal chromosomes displayed 11-34 repeats. The HD repeat length was inversely correlated with the age of onset of the disorder. The HD repeat was unstable in more than 80% of meiotic transmissions showing both increases and decreases in size with the largest increases occurring in paternal transmissions. The targeting of spermatogenesis as a particular source of repeat instability is reflected in the repeat distribution of HD sperm DNA. The analysis of the length and instability of individual repeats in members of these families has profound implications for presymptomatic diagnosis.
Mutations in the GLI3 zinc-finger transcription factor gene cause Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS), which are variable but distinct clinical entities. We hypothesized that GLI3 mutations that predict a truncated functional repressor protein cause PHS and that functional haploinsufficiency of GLI3 causes GCPS. To test these hypotheses, we screened patients with PHS and GCPS for GLI3 mutations. The patient group consisted of 135 individuals: 89 patients with GCPS and 46 patients with PHS. We detected 47 pathological mutations (among 60 probands); when these were combined with previously published mutations, two genotype-phenotype correlations were evident. First, GCPS was caused by many types of alterations, including translocations, large deletions, exonic deletions and duplications, small in-frame deletions, and missense, frameshift/nonsense, and splicing mutations. In contrast, PHS was caused only by frameshift/nonsense and splicing mutations. Second, among the frameshift/nonsense mutations, there was a clear genotype-phenotype correlation. Mutations in the first third of the gene (from open reading frame [ORF] nucleotides [nt] 1-1997) caused GCPS, and mutations in the second third of the gene (from ORF nt 1998-3481) caused primarily PHS. Surprisingly, there were 12 mutations in patients with GCPS in the 3' third of the gene (after ORF nt 3481), and no patients with PHS had mutations in this region. These results demonstrate a robust correlation of genotype and phenotype for GLI3 mutations and strongly support the hypothesis that these two allelic disorders have distinct modes of pathogenesis.
The expression of type X collagen is restricted to hypertrophic chondrocytes in regions undergoing endochondral ossification, such as growth plates. The precise function of type X collagen is unknown but the tissue-specific expression prompted us to examine the gene in hereditary disorders of cartilage and bone growth (osteochondrodysplasias). We have identified a 13 base pair deletion in one type X collagen allele segregating with autosomal dominant Schmid metaphyseal chondrodysplasia in a large Mormon kindred (lod score = 18.2 at theta = 0). The mutation produces a frameshift which alters the highly conserved C-terminal domain of the alpha 1(X) chain and reduces the length of the polypeptide by nine residues. This mutation may prevent association of the mutant polypeptide during trimer formation, resulting in a decreased amount of normal protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.