The Nelder-Mead simplex algorithm, first published in 1965, is an enormously popular direct search method for multidimensional unconstrained minimization. Despite its widespread use, essentially no theoretical results have been proved explicitly for the Nelder-Mead algorithm. This paper presents convergence properties of the Nelder-Mead algorithm applied to strictly convex functions in dimensions 1 and 2. We prove convergence to a minimizer for dimension 1, and various limited convergence results for dimension 2. A counterexample of McKinnon gives a family of strictly convex functions in two dimensions and a set of initial conditions for which the Nelder-Mead algorithm converges to a nonminimizer. It is not yet known whether the Nelder-Mead method can be proved to converge to a minimizer for a more specialized class of convex functions in two dimensions.
Abstract.Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interior-point techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar's widely publicized announcement in 1984 of a fast polynomial-time interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.