Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.
This study elucidates the charge transport processes of polyaniline (PANI) composite membranes and correlates them to the PANI deposition site and the extent of PANI surface layering on the base microporous membranes. PANI was deposited either as a surface layer or inside the pores of cellulose acetate microporous membranes using various in situ chemical polymerization techniques. The extent of PANI layering at the surface of the base membrane and its oxidation and doping states were characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). PANI deposition on the membranes showed a strong dependence on the polymerization technique and polymerization time within a single technique. In XPS, the deconvolution of C 1s and N 1s core-level spectra of the composite membranes was used to quantify the extent of PANI layering at the surface along with its oxidation and doping states. PANI incompletely covered the surface of the base microporous membranes for all the employed techniques. However, the extent of the layering increased with the polymerization time in a particular technique. The charge transport through the bulk membrane and charge transfer at the membrane/electrode interface were studied by electrochemical impedance spectroscopy (EIS). The data were analyzed using the equivalent circuit modeling technique. The modeling parameters revealed that PANI deposition at the surface enhanced the interfacial charge transfer but the process depended on the extent of the surface coverage of the membrane. In addition, the charge transport in the bulk membrane depended on the PANI intercalation level, which varied depending on the polymerization technique employed. In addition, the EIS of electrolyte-soaked membranes was also conducted to evaluate the effects of PANI deposition site on charge transport in the presence of an electrolyte. PANI layering at the pore walls of the base membrane from diaphragmatic polymerization in a two-compartment cell showed that charge transport processes were strongly affected by the interaction of the electrolyte with the PANI layer at the pore surface. This study successfully showed the dependence of charge transport mechanisms of PANI composite membranes on the PANI deposition site and extent of surface layering at the membrane surface.
Obligate brood parasitic birds lay their eggs in nests of other species and parasite eggs typically have evolved greater structural strength relative to host eggs. Increased mechanical strength of the parasite eggshell is an adaptation that can interfere with puncture ejection behaviours of discriminating hosts. We investigated whether hardness of eggshells is related to differences between physical and chemical traits from three different races of the parasitic common cuckoo Cuculus canorus, and their respective hosts. Using tools developed for materials science, we discovered a novel correlate of increased strength of parasite eggs: the common cuckoo's egg exhibits a greater microhardness, especially in the inner region of the shell matrix, relative to its host and sympatric non-host species. We then tested predictions of four potential mechanisms of shell strength: (i) increased relative thickness overall, (ii) greater proportion of the structurally harder shell layers, (iii) higher concentration of inorganic components in the shell matrix, and (iv) elevated deposition of a high density compound, MgCO 3 , in the shell matrix. We confirmed support only for hypothesis (i). Eggshell characteristics did not differ between parasite eggs sampled from different host nests in distant geographical sites, suggesting an evolutionarily shared microstructural mechanism of stronger parasite eggshells across diverse host-races of brood parasitic cuckoos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.