To identify the molecular mechanisms underlying psychostimulant-elicited plasticity in the brain reward system, we undertook a phenotype-driven approach using genome-wide microarray profiling of striatal transcripts from three genetic and one pharmacological mouse models of psychostimulant or dopamine supersensitivity. A small set of co-affected genes was identified. One of these genes encoding the synaptic scaffolding protein PSD-95 is downregulated in the striatum of all three mutants and in chronically, but not acutely, cocaine-treated mice. At the synaptic level, enhanced long-term potentiation (LTP) of the frontocortico-accumbal glutamatergic synapses correlates with PSD-95 reduction in every case. Finally, targeted deletion of PSD-95 in an independent line of mice enhances LTP, augments the acute locomotor-stimulating effects of cocaine, but leads to no further behavioral plasticity in response to chronic cocaine. Our findings uncover a previously unappreciated role of PSD-95 in psychostimulant action and identify a molecular and cellular mechanism shared between drug-related plasticity and learning.
Voltage-dependent potassium channels regulate membrane excitability and cell–cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain–containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons. Here, we show that PSD-95 colocalizes precisely with Kv1 potassium channels and Caspr2 at juxtaparanodes, and that a macromolecular complex of Kv1 channels and PSD-95 can be immunopurified from mammalian brain and spinal cord. Surprisingly, we find that the high density clustering of Kv1 channels and Caspr2 at juxtaparanodes is normal in a mutant mouse lacking juxtaparanodal PSD-95, and that the indirect interaction between Kv1 channels and Caspr2 is maintained in these mutant mice. These data suggest that the primary function of PSD-95 at juxtaparanodes lies outside of its accepted role in mediating the high density clustering of Kv1 potassium channels at these sites.
Spontaneous and double-strand break (DSB)-induced gene conversion was examined in alleles of the Saccharomyces cerevisiae ura3 gene containing nine phenotypically silent markers and an HO nuclease recognition site. Conversions of these alleles, carried on ARS1/CEN4 plasmids, involved interactions with heteroalleles on chromosome V and were stimulated by DSBs created at HO sites. Crossovers that integrate plasmids into chromosomes were not detected since the resultant dicentric chromosomes would be lethal. Converted alleles in shuttle plasmids were easily transferred to Escherichia coli and analyzed for marker conversion, facilitating the characterization of more than 400 independent products from five crosses. This analysis revealed several new features of gene conversions. The average length of DSB-induced conversion tracts was 200 to 300 bp, although about 20%o were very short (less than 53 bp). About 20%o of spontaneous tracts also were also less than 53 bp, but spontaneous tracts were on average about 40%o longer than DSB-induced tracts. Most tracts were continuous, but 3% had discontinuous conversion patterns, indicating that extensive heteroduplex DNA is formed during at least this fraction of events. Mismatches in heteroduplex DNA were repaired in both directions, and repair tracts as short as 44 bp were observed. Surprisingly, most DSB-induced gene conversion tracts were unidirectional and exhibited a reversible polarity that depended on the locations of DSBs and frameshift mutations in recipient and donor alleles.Gene conversion is defined as the nonreciprocal transfer of two strands of information from one DNA duplex to a homologous duplex. Gene conversion has been widely studied in yeasts and other fungi and is evidenced during meiosis by 6:2 aberrant segregation patterns (43). Gene conversion also occurs in mitotic cells, e.g., yeast mating-type interconversion (21). Although gene conversion involves nonreciprocal information transfer, it is often associated with reciprocal exchange of markers flanking the converted region. Such exchanges are explained by models that invoke symmetric cross-strand structures (Holliday junctions [22]) that allow resolution of recombination intermediates in two senses, predicting flanking marker exchange in up to 50% of products (41).An important feature of gene conversion is that close markers often coconvert. This feature indicates that gene conversion involves a region of DNA or tract, and many studies have shown that most conversion tracts are continuous (1,3,7,8,26,61,67). Conversion tract lengths have been measured for both meiotic and mitotic events. A controlled study comparing tract lengths for allelic URA3 genes indicated that mitotic tracts were usually longer than 2 to 4 kbp, whereas meiotic tracts were usually shorter than 2 kbp (26). Average tract lengths were less than 500 bp for mitotic conversion between alleles in plasmids (3) or between nontandem duplications in a chromosome (1, 67). These shorter tracts probably reflect limitations imposed by the len...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.