A requisite step in the biosynthesis of tRNA is the renmoval of 5' leader sequences from tRNA precursors. We have detected an RNase P activity in yeast mitochondrial extracts that can carry out this reaction on a homologous precursor tRNA. This mitochondrial RNase P was sensitive to both micrococcal nuclease and protease, demonstrating that it requires both a nucleic acid and protein for activity. The presence of RNase P activity in vitro directly correlated with the presence of a locus on yeast mitochondrial DNA previously shown by genetic and biochemical studies to be required for tRNA maturation. The product of the locus, the 9S RNA, and this newly described mitochondrial RNase P activity cofractionated, providing further evidence that the 9S
Transfer RNA genes have been mapped to at least nine different loci on the physical map of the Euglena gracilis chloroplast genome. One of these loci in the ribosomal RNA operons is present three times per genome. The DNA sequences of six of the nine different loci, containing 21 different tRNA genes, have been determined. Genes corresponding to the amino acids Ala, Arg, Asn, Cys, Gln, Gly (2), Glu, His, Ile, Leu (2), Met (2), Phe, Ser, Thr, Trp, Tyr, Val, and one unassigned species have been identified. All genes except one are found in clusters of 2-6 genes. None of the known genes contains introns, nor codes for the 3'-CCA terminus. In addition to these genes, two pseudo tRNA genes are present in the rDNA leader region.
We have previously described a mitochondrial activity that removes 5' leaders from yeast mitochondrial precursor tRNAs and suggested that it is a mitochondrial RNase P. Here we demonstrate that the cleavage reaction results in a 5' phosphate on the tRNA product and thus the activity is analogous to that of other RNase Ps. A mitochondrial gene called the tRNA synthesis locus encodes an A + U-rich RNA required for this activity in vivo. Two regions of this RNA display sequence similarity to conserved sequences in bacterial RNase P RNAs. This sequence similarity coupled with the analogous activities of the enzymes has led us to conclude that the RNAs are homologous and that the tRNA synthesis locus does code for the mitochondrial RNase P RNA subunit. The smallest and most abundant transcript of the tRNA synthesis locus is 490 nucleotides long. However, during purification of the holoenzyme, RNA is degraded and pieces of the original RNA are sufficient to support RNase P activity in vitro.
Ecdysteroids regulate a wide variety of cellular processes during arthropod development, yet little is known about the genes involved in the biosynthesis of these hormones. Previous studies have suggested that production of 20-hydroxyecdysone in Drosophila and other arthropods involves a series of cytochrome P450 catalyzed hydroxylations of cholesterol. In this report, we show that the disembodied (dib) locus of Drosophila codes for a P450-like sequence. In addition, we find that dib mutant embryos have very low titers of ecdysone and 20-hydroxyecdysone (20E) and fail to express IMP-E1 and L1, two 20E-inducible genes, in certain tissues of the embryo. In situ hybridization studies reveal that dib is expressed in a complex pattern in the early embryo, which eventually gives way to restricted expression in the prothoracic portion of the ring gland. In larval and adult tissues, dib expression is observed in the prothoracic gland and follicle cells of the ovaries respectively, two tissues known to synthesize ecdysteroids. Phenotypic analysis reveals that dib mutant embryos produce little or no cuticle and exhibit severe defects in many late morphogenetic processes such as head involution, dorsal closure and gut development. In addition, we examined the phenotypes of several other mutants that produce defective embryonic cuticles. Like dib, mutations in the spook (spo) locus result in low embryonic ecdysteroid titers, severe late embryonic morphological defects, and a failure to induce IMP-E1. From these data, we conclude that dib and spo likely code for essential components in the ecdysone biosynthetic pathway and that ecdysteroids regulate many late embryonic morphogenetic processes such as cell movement and cuticle deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.