Introduction The lymphotoxin-beta receptor (LTR) pathway is important in the development and maintenance of lymphoid structures. Blocking this pathway has proven beneficial in murine models of autoimmune diseases such as diabetes and rheumatoid arthritis. The aim of this study was to determine the effects of LTR pathway blockade on Sjögren syndrome (SS)-like salivary gland disease in non-obese diabetic (NOD) mice.
IntroductionIn Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome.MethodsMale NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores.ResultsLTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01).ConclusionsBlockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome.
This paper describes the introduction of a virtual microscope (VM) that has allowed preclinical histology teaching to be fashioned to better suit the needs of approximately 900 undergraduate students per year studying medicine, dentistry or veterinary science at the University of Bristol, UK. Features of the VM implementation include: 1) the facility for students and teachers to make annotations on the digital slides; 2) in-house development of VM-based quizzes that are used for both formative and summative assessments; 3) archiving of teaching materials generated each year, enabling students to access their personalized learning resources throughout their programs; 4) retention of light microscopy capability alongside the VM. Student feedback on the VM is particularly positive about its ease of use, the value of the annotation tool, the quizzes and the accessibility of all components off-campus. Analysis of login data indicates considerable, although variable, use of the VM by students outside timetabled teaching.The median number of annual logins per student account for every course exceeded the number of timetabled histology classes for that course (1.6 -3.5 times). The total number of annual student logins across all cohorts increased from approximately 9,000 in 2007-08 to 22,000 in 2010-11. The implementation of the VM has improved teaching and learning in practical classes within the histology laboratory and facilitated consolidation and revision of material outside the laboratory. Discussion is provided of some novel strategies that capitalize on the benefits of introducing a VM, as well as strategies adopted to overcome some potential challenges.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.