Nuclear receptors (NRs) complexed with agonist ligands activate transcription by recruiting coactivator protein complexes. In principle, one should be able to inhibit the transcriptional activity of the NRs by blocking this transcriptionally critical receptor-coactivator interaction directly, using an appropriately designed coactivator binding inhibitor (CBI). To guide our design of various classes of CBIs, we have used the crystal structure of an agonist-bound estrogen receptor (ER) ligand binding domain (LBD) complexed with a coactivator peptide containing the LXXLL signature motif bound to a hydrophobic groove on the surface of the LBD. One set of CBIs, based on an outside-in design approach, has various heterocyclic cores (triazenes, pyrimidines, trithianes, cyclohexanes) that mimic the tether sites of the three leucines on the peptide helix, onto which are appended leucine residue-like substituents. The other set, based on an inside-out approach, has a naphthalene core that mimics the two most deeply buried leucines, with substituents extending outward to mimic other features of the coactivator helical peptide. A fluorescence anisotropy-based coactivator competition assay was developed to measure the specific binding of these CBIs to the groove site on the ER-agonist complex with which coactivators interact; control ligand-binding assays assured that their interaction was not with the ligand binding pocket. The most effective CBIs were those from the pyrimidine family, the best binding with K(i) values of ca. 30 microM. The trithiane- and cyclohexane-based CBIs appear to be poor structural mimics, because of equatorial vs axial conformational constraints, and the triazene-based CBIs are also conformationally constrained by amine-substituent-to-ring resonance overlap, which is not the case with the higher affinity alkyl-substituted pyrimidines. The pyrimidine-based CBIs appear to be the first small molecule inhibitors of NR coactivator binding.
We report here on the design, synthesis, and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor alpha. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich alpha-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor alpha. Several of these molecules are among the most potent inhibitors of this interaction described to date and are active at low micromolar concentrations in both in vitro models of estrogen receptor action and in cell-based assays of estrogen receptor-mediated coactivator interaction and transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.