Birds that travel long distances between their wintering and breeding grounds may be particularly susceptible to neurotoxic insecticides, but the influence of insecticides on migration ability is poorly understood. Following acute exposure to two widely used agricultural insecticides, imidacloprid (neonicotinoid) and chlorpyrifos (organophosphate), we compared effects on body mass, migratory activity and orientation in a seed-eating bird, the white-crowned sparrow (Zonotrichia leucophrys). During spring migration, sparrows were captured, held and dosed by gavage daily for 3 days with either the vehicle control, low (10% LD50) or high (25% LD50) doses of imidacloprid or chlorpyrifos and tested in migratory orientation trials pre-exposure, post-exposure and during recovery. Control birds maintained body mass and a seasonally appropriate northward orientation throughout the experiment. Imidacloprid dosed birds exhibited significant declines in fat stores and body mass (mean loss: −17% low, −25% high dose) and failed to orient correctly. Chlorpyrifos had no overt effects on mass but significantly impaired orientation. These results suggest that wild songbirds consuming the equivalent of just four imidacloprid-treated canola seeds or eight chlorpyrifos granules per day over 3 days could suffer impaired condition, migration delays and improper migratory direction, which could lead to increased risk of mortality or lost breeding opportunity.
Neonicotinoids are neurotoxic insecticides widely used as seed treatments, but little is known of their effects on migrating birds that forage in agricultural areas. We tracked the migratory movements of imidacloprid-exposed songbirds at a landscape scale using a combination of experimental dosing and automated radio telemetry. Ingestion of field-realistic quantities of imidacloprid (1.2 or 3.9 milligrams per kilogram body mass) by white-crowned sparrows (Zonotrichia leucophrys) during migratory stopover caused a rapid reduction in food consumption, mass, and fat and significantly affected their probability of departure. Birds in the high-dose treatment stayed a median of 3.5 days longer at the site of capture after exposure as compared with controls, likely to regain fuel stores or recover from intoxication. Migration delays can carry over to affect survival and reproduction; thus, these results confirm a link between sublethal pesticide exposure and adverse outcomes for migratory bird populations.
Olive oil contains a vast range of substances such as monounsaturated free fatty acids (e.g., oleic acid), hydrocarbon squalene, tocopherols, aroma components, and phenolic compounds. Higher consumption of olive oil is considered the hallmark of the traditional Mediterranean diet, which has been associated with low incidence and prevalence of cancer, including colorectal cancer. The anticancer properties of olive oil have been attributed to its high levels of monounsaturated fatty acids, squalene, tocopherols, and phenolic compounds. Nevertheless, there is a growing interest in studying the role of olive oil phenolics in carcinogenesis. This review aims to provide an overview of the relationship between olive oil phenolics and colorectal cancer, in particular summarizing the epidemiologic, in vitro, cellular, and animal studies on antioxidant and anticarcinogenic effects of olive oil phenolics.
2,2',4,4',5-Pentabromodiphenyl ether (BDE-99) is a brominated flame retardant congener that has pervaded global food chains, being reported in avian egg and tissue samples throughout the world. Its effects on birds are not well known, but there is evidence in exposed mammals that it directly mediates and causes neurotoxicity, alters thyroid hormone homeostasis, and lowers sex steroid hormone concentrations. In birds, those processes could disrupt the song-control system and male mating behavior. In this study, the effects of nestling exposure to environmentally relevant levels of BDE-99 were assessed in a model songbird species, the zebra finch (Taeniopygia guttata). A tissue residue study in which zebra finch nestlings were orally exposed to 0, 2.5, 15.8, or 50.7 ng BDE-99/g body weight (bw) per day over the 21-day nesting period validated dosing methods and confirmed dose levels were environmentally relevant (332.7 ± 141.0 to 4450.2 ± 1396.2 ng/g plasma lipid). A full-scale study exposing nestlings to 0, 2.5, 15.8, 50.7, or 173.8 ng BDE-99/g bw/day was carried out to investigate long-term effects of BDE-99 on the adult song-control nuclei volumes, song quality, and male mating behavior. Early exposure to BDE-99 had significant effects on male mating behavior and the response of clean experienced females to exposed males. There was no effect on male song-control nuclei or song quality, and there were nondose-dependent effects on female song-control nuclei. The results demonstrate that early exposure to environmentally relevant levels of BDE-99 affects the behavior of zebra finches.
Abstract-Avian eggs are exposed to hydrophobic contaminants through maternal transfer. How maternal transfer of contaminants within a species is influenced by individual variation in characteristics such as body burden, yolk precursor levels, or reproductive investment is not understood. The authors investigated sources of variation in the maternal transfer of 2,2 0 ,4,4 0 ,5-pentabromodiphenyl ether (BDE-99) in zebra finches (Taeniopygia guttata). The authors dosed adult female zebra finches with levels of BDE-99 relevant to exposure in wild birds (0, 33.7 or 173.8 ng/g body wt/d) for three weeks prior to pairing. Maternal BDE-99 and very-low-density lipoprotein (VLDL) in plasma were measured during egg formation and at clutch completion, and BDE-99 was measured in the corresponding egg. The lipid-normalized egg-to-maternal tissue BDE-99 relationship decreased with increasing maternal burden. Individual variation in maternal VLDL was related to BDE-99 transfer to the eggs when BDE-99 was at background levels in control birds, but not when BDE-99 was elevated in dosed birds. The decrease in maternal plasma BDE-99 over the laying period was only significant ( p < 0.05) in the high-dose birds. Finally, the decrease in BDE-99 in maternal plasma during egg-laying was significantly positively correlated with clutch mass in the high-dose group. These results suggest that the relationship between maternal and egg contaminant levels can be highly variable. This has significant implications for using eggs as indicators of adult or environmental concentrations. Environ. Toxicol. Chem. 2013;32:345-352. # 2012 SETAC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.