Composite nanoclusters with chemical, magnetic, and biofunctionality offer broad opportunities for targeted cellular imaging. A key challenge is to load a high degree of targeting, imaging, and therapeutic functionality onto stable metal-oxide nanoparticles. Here we report a route for producing magnetic nanoclusters (MNCs) with alkyne surface functionality that can be utilized as multimodal imaging probes. We form MNCs composed of magnetic Fe(3)O(4) nanoparticles and poly(acrylic acid-co-propargyl acrylate) by the co-precipitation of iron salts in the presence of copolymer stabilizers. The MNCs were surface-modified with near-infrared (NIR) emitting fluorophore used in photodynamic therapy, an azide-modified indocyanine green. The fluorophores engaged and complexed with bovine serum albumin, forming an extended coverage of serum proteins on the MNCs. These proteins isolated indocyanine green fluorophores from the aqueous environment and induced an effective "turn-on" of NIR emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.