Apple pomace samples were evaluated for conversion to ethanol at industrial relevant conditions. Biomass degradation efficiency by commercial enzymes was evaluated at 20 % solid loading for dilute sulfuric acid, calcium oxide, and autoclave without any chemical (control) apple pomace samples. The control and calcium oxide-pretreated pomace provided similar sugar yields, while dilute sulfuric acid pretreatment resulted in reduced sugar yields. The control and calcium oxide-pretreated pomace hydrolysate were fermented to ethanol using a native Saccharomyces cerevisiae yeast strain, producing 38.8 and 36.9 g/L of ethanol, respectively. When control apple pomace sample loading was increased from 20 to 30 %, 57.5 and 50.1 g/L of glucose and fructose was produced, respectively. Lastly, we found that unhydrolyzed solids (UHS) present during fermentation had little effect on ethanol yield, as 53.6 and 53.8 g/L of ethanol were produced with and without UHS, respectively. Overall, ethanol yields were 134 g per kg of dry apple pomace. A complete process mass balance for enzyme hydrolysis and ethanol fermentation is provided in this manuscript. These results show that apple pomace is an excellent feedstock for producing ethanol that could be either used as biofuel or as beverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.