Background Semi-field experiments with human landing catch (HLC) measure as the outcome are an important step in the development of novel vector control interventions against outdoor transmission of malaria since they provide good estimates of personal protection. However, it is often infeasible to determine whether the reduction in HLC counts is due to mosquito mortality or repellency, especially considering that spatial repellents based on volatile pyrethroids might induce both. Due to the vastly different impact of repellency and mortality on transmission, the community-level impact of spatial repellents can not be estimated from such semi-field experiments. Methods We present a new stochastic model that is able to estimate for any product inhibiting outdoor biting, its repelling effect versus its killing and disarming (preventing host-seeking until the next night) effects, based only on time-stratified HLC data from controlled semi-field experiments. For parameter inference, a Bayesian hierarchical model is used to account for nightly variation of semi-field experimental conditions. We estimate the impact of the products on the vectorial capacity of the given Anopheles species using an existing mathematical model. With this methodology, we analysed data from recent semi-field studies in Kenya and Tanzania on the impact of transfluthrin-treated eave ribbons, the odour-baited Suna trap and their combination (push–pull system) on HLC of Anopheles arabiensis in the peridomestic area. Results Complementing previous analyses of personal protection, we found that the transfluthrin-treated eave ribbons act mainly by killing or disarming mosquitoes. Depending on the actual ratio of disarming versus killing, the vectorial capacity of An. arabiensis is reduced by 41 to 96% at 70% coverage with the transfluthrin-treated eave ribbons and by 38 to 82% at the same coverage with the push–pull system, under the assumption of a similar impact on biting indoors compared to outdoors. Conclusions The results of this analysis of semi-field data suggest that transfluthrin-treated eave ribbons are a promising tool against malaria transmission by An. arabiensis in the peridomestic area, since they provide both personal and community protection. Our modelling framework can estimate the community-level impact of any tool intervening during the mosquito host-seeking state using data from only semi-field experiments with time-stratified HLC.
Background Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of malaria vectors in the peri-domestic space. Methods Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol® or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push–pull set-up were quantified. Results Microencapsulated Citriodiol® eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12–0.23). This impact was lower (OR 0.59; 95% CI 0.52–0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence (‘pull’ only) and in the presence of a spatial repellent (‘push-pull’), indicating that in its current configuration the tested ‘pull’ does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. Conclusion This step-by-step evaluation of the selected ‘push’ and ‘pull’ components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control.
BackgroundMalaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control.MethodsThe malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level.ResultsCBTs collected on average 2.8 (95% CI: 1.8–4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6–11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8–2.3) primary and 1.1 (95% CI: 0.6–2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7–50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13–0.52).ConclusionsEntomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.