The electron microprobe maps the spatial distribution of elements in a rock at a sub-mineral-grain scale to provide a basis for understanding mineralization processes and to determine optimal strategies for extraction of valuable target elements. Round Top Mountain (near the town of Sierra Blanca, Hudspeth County, west Texas, USA) is a peraluminous rhyolite laccolith that is homogeneously mineralized at over 500 ppm rare earths, more than 70% of which are yttrium and heavy rare earths (YHREEs). The massive deposit is exposed at the surface as a mountain some 2 km in diameter and 375 m in height. Round Top Mountain also contains Li, Be, U, Th, Nb, Ta, Ga, Rb, Cs, Sn, and F. The valuable YHREEs are hosted in yttrofluorite, which is soluble in dilute sulfuric acid. Texas Mineral Resources Corporation proposes to surface mine, crush, and heap leach the deposit. The distribution of YHREEs, and that of other trace elements, is remarkably homogeneous at outcrop drill hole scale. Here we document that YHREE mineralization appears pervasive through the rhyolite at a millimeter scale. Back scattered electron (BSE) and characteristic X-ray maps reveal the fine grain size and apparently random and dispersed spatial distribution of the yttrofluorite that hosts Round Top's valuable YHREEs. The yttrofluorite grains do not appear to cluster at special mineralized locations, e.g., in pores or along cracks in the rhyolite. The same is apparently true of such other potentially valuable minerals as cassiterite and uranium species. These findings confirm that the distribution of YHREEs in Round Top Mountain rhyolite is homogeneous through different orders of magnitude of scale, i.e., from outcrop (as seen in the companion work in this volume) to sub-thin section. The material thus is ideal for a heap leach operation where homogeneous feedstock is crucial to consistent and economic operation. The findings also confirm and explain why mechanical separation would prove very difficult and expensive due to the astronomical number of yttrofluorite grains in even a golf-ball-size piece of Round Top rhyolite.How to cite this paper: Pingitore
Rare earth elements (REEs), especially heavy rare earth elements (HREEs), are in demand for their current and emerging applications in advanced technologies. Here we perform computer-driven micro-mapping at the millimeter scale of the minerals that comprise Round Top Mountain, in west Texas, USA. This large rhyolite deposit is enriched in HREEs and such other critical elements as Li, Be, and U. Electron probe microanalysis of 2 × 2 mm areas of thin sections of the rhyolite produced individual maps of 16 elements. These were superimposed to generate a 16-element composition at each pixel. Principal components analysis of elements at each pixel identified the specific mineral at that site. The pixels were then relabeled as the appropriate minerals, thereby producing a single mineral map. The overall mineral composition of the 7 studied samples compared favorably with prior analyses of the Round Top deposit available in the literature. Likewise the range of porosity in the maps was consistent with that of previous direct measurements by water saturation. This new statistical and GIS-based technique provides a robust and unbiased approach to electron microprobe mapping. The study further showed that the high-value yttrofluorite grains exhibited little tendency to cluster with other late-stage trace minerals and that the samples extended the previously documented overall homogeneity of the deposit at field scale to this microscopic scale.
Critical and rare earth elements are in high demand for their increasing incorporation in modern technological devices for applications in the military, industrial, commercial, and consumer sectors. Round Top Mountain, a rhyolite laccolith in Sierra Blanca, west Texas, U.S.A. is a unique mineral deposit that offers opportunity for development of rare earth elements, especially the heavy rare earths, as well as associated critical elements. The main objective here is to evaluate the distances between accessory minerals of potential economic value (yttrofluorite, cryolite, uraninite, thorite, cassiterite, and columbite), and to major (potassium feldspar, albite, and quartz) and minor minerals (annite mica, magnetite, and zircon). In this study we explore the proximity and clustering of these minor and accessory minerals, at the micron-to-millimeter scale, from mineral maps constructed in a previous application of ArcGIS™ tools to electron probe microanalysis (EPMA) element maps. Our goal is to determine whether specific minerals cluster spatially and, if so, at what distances. We noted that the high-value target yttrofluorite grains often neighbor potassium feldspar and quartz grains, but less commonly magnetite and mica grains. With regard to cluster analysis, most minor and accessory minerals were found to group together at small scales (low micrometer) and were dispersed or random at larger (up to 1 mm) distances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.