During angiogenesis, endothelial cells penetrate fibrin barriers via undefined proteolytic mechanisms. We demonstrate that the fibrinolytic plasminogen activator (PA)-plasminogen system is not required for this process, since tissues isolated from PA- or plasminogen-deficient mice successfully neovascularize fibrin gels. By contrast, neovessel formation, in vitro and in vivo, is dependent on fibrinolytic, endothelial cell-derived matrix metalloproteinases (MMP). MMPs directly regulate this process as invasion-incompetent cells penetrate fibrin barriers when transfected with the most potent fibrinolytic metalloproteinase identified in endothelium, membrane type-1 MMP (MT1-MMP). Membrane display of MT1-MMP is required, as invasion-incompetent cells expressing a fibrinolytically active, transmembrane-deleted form of MT1-MMP remain noninvasive. These observations identify a PA-independent fibrinolytic pathway wherein tethered MMPs function as pericellular fibrinolysins during the neovascularization process.
Mononuclear phagocytes (MO) produce urokinase-type plasminogen activator (uPA) and also express a specific cell-surface receptor for urokinase, uPAR. The concomitant expression of these proteins provides a mechanism by which MO can degrade extracellular matrix proteins during directed cell migration. In this study, we sought to determine if uPAR plays a role in MO chemotaxis that is distinct from its role in matrix proteolysis. Exposing adherent monocytes to a chemotactic gradient causes plasma membrane uPAR to localize strongly to the leading edge of cell migration. Adherence alone or exposure to FMLP had no effect on uPAR expression. Using Boyden chamber chemotaxis assays, we demonstrate that treating mononuclear cells with an anti-uPAR mAb (either as an intact mAb or Flab'12) ablates chemotaxis induced by FMLP and monocyte chemotactic peptide-1 (P < 0.001). Inactivating the catalytic activity of uPAR-bound uPA had no effect on chemotaxis. Similarly, blocking uPAR expression with an antisense oligonucleotide to uPAR completely ablates chemotaxis, but blocking uPA expression with an antisense oligonucleotide to uPA has a minimal effect. We therefore demonstrate that expression and unimpeded function of uPAR plays an obligate role in M6 chemotaxis by mechanisms that are largely independent of its ligand, uPA. Combined with its known role in mediating pericellular proteolysis, these observations demonstrate that uPAR is essential for both locomotion and traversing tissue barriers during MO migration. (J. Clin. Invest. 1994.
Leukocytes express both urokinase-type plasminogen activator (uPA) and the urokinase receptor (uPAR, CD87). Evidence in vitro has implicated uPAR as a modulator of β2 integrin function, particularly CR3 (CD11b/CD18, Mac-1). Pseudomonas aeruginosa infection has been demonstrated to recruit neutrophils to the pulmonary parenchyma by a β2 integrin-dependent mechanism. We demonstrate that mice deficient in uPAR (uPAR−/−) have profoundly diminished neutrophil recruitment in response to P. aeruginosa pneumonia compared with wild-type (WT) mice. The requirement for uPAR in neutrophil recruitment is independent of the serine protease uPA, as neutrophil recruitment in uPA−/− mice is indistinguishable from recruitment in WT mice. uPAR−/− mice have impaired clearance of P. aeruginosa compared with WT mice, as demonstrated by CFU and comparative histology. WT mice have diminished neutrophil recruitment to the lung when an anti-CD11b mAb is given before inoculation with the pathogen, while recruitment of uPAR−/− neutrophils is unaffected. We conclude that uPAR is required for the recruitment of neutrophils to the lung in response to P. aeruginosa pneumonia and that this requirement is independent of uPA. Further, we show that uPAR and CR3 act by a common mechanism during neutrophil recruitment to the lung in response to P. aeruginosa. This is the first report of a requirement for uPAR during cellular recruitment in vivo against a clinically relevant pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.