The critical size limit of electric polarization remains a fundamental question in nanoscale ferroelectric research 1 . As such, the viability of ultrathin ferroelectricity greatly impacts emerging low-power logic and nonvolatile memories 2 . Size effects in ferroelectrics have been thoroughly investigated for perovskite oxides -the archetypal ferroelectric system 3 . Perovskites, however, have so far proved unsuitable for thickness-scaling and integration with modern semiconductor processes 4 . Here, we report ultrathin ferroelectricity in doped-HfO2, a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to 1 nm. Our results indicate not only the absence of a ferroelectric critical thickness, but also enhanced polar distortions as film thickness is reduced, contradictory to perovskite ferroelectrics. This work shifts the focus on the fundamental limits of ferroelectricity to simpler transition metal oxide systems -from perovskite-derived complex oxides to fluoritestructure binary oxides -in which 'reverse' size effects counter-intuitively stabilize polar symmetry in the ultrathin regime.Ferroelectric materials exhibit stable states of collectively ordered electrical dipoles whose polarization can be reversed under an applied electric field 5 . Consequently, ultrathin ferroelectrics are of great technological interest for high-density electronics, particularly field-effect transistors and nonvolatile memories 2 . However, ferroelectricity is typically suppressed at the few nanometer scale in the ubiquitous perovskite oxides 6 . First-principles calculations predict six unit cells as the critical thickness in perovskite ferroelectrics 1 due to incomplete screening of depolarization fields 3 . Atomic-scale ferroelectricity in perovskites often fail to demonstrate polarization switching 7,8 , a crucial ingredient for application. Furthermore, attempts to synthesize ferroelectric perovskite films on silicon 9,10 are plagued by chemical incompatibility 4,11 and high temperatures required for epitaxial growth. Since the discovery of ferroelectricity in HfO2-based thin films in 2011 12 , fluorite-structure binary oxides (fluorites) have attracted considerable interest 13 as they enable lowtemperature synthesis and conformal growth in three-dimensional (3D) structures on silicon 14,15 , thereby overcoming many of the issues that restrict its perovskite counterparts in terms of complementary metal-oxide-semiconductor (CMOS) compatibility and thickness scaling 16 .
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO/SrTiO superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a/a phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Leveraging competition between energetically degenerate states to achieve large field-driven responses is a hallmark of functional materials, but routes to such competition are limited. Here, a new route to such effects involving domain-structure competition is demonstrated, which arises from strain-induced spontaneous partitioning of PbTiO thin films into nearly energetically degenerate, hierarchical domain architectures of coexisting c/a and a /a domain structures. Using band-excitation piezoresponse force microscopy, this study manipulates and acoustically detects a facile interconversion of different ferroelastic variants via a two-step, three-state ferroelastic switching process (out-of-plane polarized c → in-plane polarized a → out-of-plane polarized c state), which is concomitant with large nonvolatile electromechanical strains (≈1.25%) and tunability of the local piezoresponse and elastic modulus (>23%). It is further demonstrated that deterministic, nonvolatile writing/erasure of large-area patterns of this electromechanical response is possible, thus showing a new pathway to improved function and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.