Cell death in the Drosophila embryonic central nervous system (CNS) proceeds by apoptosis, which is revealed ultrastructurally by nuclear condensation, shrinkage of cytoplasmic volume, and preservation of intracellular organelles. Apoptotic cells do not accumulate in the CNS but are continuously removed and engulfed by phagocytic haemocytes. To determine whether embryonic glia can function as phagocytes, we studied serial electronic microscopic sections of the Drosophila CNS. Apoptotic cells in the nervous system are engulfed by a variety of glia including midline glia, interface (or longitudinal tract) glia, and nerve root glia. However, the majority of apoptotic cells in the CNS are engulfed by subperineurial glia in a fashion similar to the microglia of the vertebrate CNS. A close proximity between macrophages and subperineurial glia suggests that glia may transfer apoptotic profiles to the macrophages. Embryos affected by the maternal-effect mutation Bicaudal-D have no macrophages. In the absence of macrophages, most apoptotic cells are retained at the outer surfaces of the CNS, and subperineurial glia contain an abundance of apoptotic cells. Some apoptotic cells are expelled from the CNS, which suggests that the removal of apoptotic cells can occur in the absence of macrophages. The number of subperineurial glia is unaffected by changes in the rate of neuronal apoptosis.
Neuronal-glial communication is essential for constructing the orthogonal axon scaffold in the developing Drosophila central nervous system (CNS). Longitudinal glia (LG) guide extending commissural and longitudinal axons while pioneer and commissural neurons maintain glial survival and positioning. However, the transcriptional regulatory mechanisms controlling these processes are not known. Previous studies showed that the midline function of the jing C 2 H 2 -type zinc-finger transcription factor was only partially required for axon scaffold formation in the Drosophila CNS. We therefore screened for gain-of-function enhancers of jing gain of function in the eye and identified the Drosophila homolog of the disease gene of human a-thalassemia/mental retardation X-linked (ATR-X) as well as other genes with potential roles in gene expression, translation, synaptic transmission, and cell cycle. jing and DATR-X reporter genes are expressed in both CNS neurons and glia, including the LG. Coexpression of jing and DATR-X in embryonic neurons synergistically affects longitudinal connective formation. During embryogenesis, jing and DATR-X have autonomous and nonautonomous roles in the lateral positioning of LG, neurons, and longitudinal axons as shown by cell-specific knockdown of gene expression. jing and DATR-X are also required autonomously for glial survival. jing and DATR-X mutations show synergistic effects during longitudinal axon formation suggesting that they are functionally related. These observations support a model in which downstream gene expression controlled by a potential DATR-X-Jing complex facilitates cellular positioning and axon guidance, ultimately allowing for proper connectivity in the developing Drosophila CNS.
The Drosophila single-minded and trachealess bHLH-PAS genes control transcription and development of the CNS midline cell lineage and tracheal tubules, respectively. We show that Single-minded and Trachealess activate transcription by forming dimers with the Drosophila Tango protein that is an orthologue of the mammalian Arnt protein. Both cell culture and in vivo studies show that a DNA enhancer element acts as a binding site for both Single-minded::Tango and Trachealess::Tango heterodimers and functions in controlling CNS midline and tracheal transcription. Isolation and analysis of tango mutants reveal CNS midline and tracheal defects, and gene dosage studies demonstrate in vivo interactions between single-minded::tango and trachealess::tango. These experiments support the existence of an evolutionarily conserved, functionally diverse bHLH-PAS protein regulatory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.