Peripheral nerve injury increases spontaneous action potential discharge in spinal dorsal horn neurons and augments their response to peripheral stimulation. This "central hypersensitivity, " which relates to the onset and persistence of neuropathic pain, reflects spontaneous activity in primary afferent fibers as well as long-term changes in the intrinsic properties of the dorsal horn (centralization). To isolate and investigate cellular mechanisms underlying "centralization," sciatic nerves of 20-day-old rats were subjected to 13-25 days of chronic constriction injury (CCI; Mosconi-Kruger polyethylene cuff model). Spinal cord slices were then acutely prepared from sham-operated or CCI animals, and whole cell recording was used to compare the properties of five types of substantia gelatinosa neuron. These were defined as tonic, irregular, phasic, transient, or delay according to their discharge pattern in response to depolarizing current. CCI did not affect resting membrane potential, rheobase, or input resistance in any neuron type but increased the amplitude and frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) in delay, transient, and irregular cells. These changes involved alterations in the action potential-independent neurotransmitter release machinery and possible increases in the postsynaptic effectiveness of glutamate. By contrast, in tonic cells, CCI reduced the amplitude and frequency of spontaneous and miniature EPSCs. Such changes may relate to the putative role of tonic cells as inhibitory GABAergic interneurons, whereas increased synaptic drive to delay cells may relate to their putative role as the excitatory output neurons of the substantia gelatinosa. Complementary changes in synaptic excitation of inhibitory and excitatory neurons may thus contribute to pain centralization.
The common heritable loss of scalp hair known as male pattern baldness or androgenetic alopecia affects up to 80% of males by age 80. A balding scalp is characterized by high levels of the potent androgen dihydrotestosterone and increased expression of the androgen receptor gene. To determine if the androgen receptor gene is associated with male pattern baldness, we compared allele frequencies of the androgen receptor gene polymorphisms (StuI restriction fragment length polymorphism and two triplet repeat polymorphisms) in cases with cosmetically significant baldness (54 young and 392 older men) and controls (107 older men) with no indication of baldness. The androgen receptor gene StuI restriction site was found in all but one (98.1%) of the 54 young bald men (p = 0.0005) and in 92.3% of older balding men (p = 0.000004) but in only 76.6% of nonbald men. The combination of shorter CAG and GGC triplet repeat lengths was also more prevalent in bald men (p = 0.03). The ubiquity of the androgen receptor gene StuI restriction site, and higher incidence of shorter triplet repeat haplotypes in bald men suggests that these markers are very close to a functional variant that is a necessary component of the polygenic determination of male pattern baldness. Functional mutation in or near the androgen receptor gene may explain the reported high levels of expression of this gene in the balding scalp.
The Victorian Family Heart Study was established to address the causes of familial patterns in cardiovascular risk factors. From 1990 to 1996, a representative population sample of 783 adult families (2,959 individuals), each comprising both parents (40-70 years) and at least one natural adult offspring (18-30 years), was recruited in Melbourne, Australia. Included in both generations were 461 monozygotic and dizygotic twins as pairs or singletons. A multivariate normal model was used for pedigree analysis of height, weight, body mass index, diastolic and systolic blood pressure, pulse rate, and total and high density lipoprotein cholesterol. All traits showed evidence for additive genetic variation, explaining from 55% (height) to 26% (pulse) of age- and sex-adjusted variance. An effect persisting into adulthood of shared family environment during cohabitation explained from 39% (body mass index) to 13% (systolic blood pressure) of variance (not nominally significant for diastolic blood pressure). These shared environmental effects were strongest within twin pairs, less so for sibling pairs, and least for parent-offspring pairs (in which an effect was not observed for weight, diastolic and systolic blood pressure, and total cholesterol). On a background of genetic influences, there are periods in early life during which the family environment cements long-term correlations between adult relatives in cardiovascular risk factors.
Peripheral nerve injury can promote neuropathic pain. The basis of the 'central sensitization' that underlies this often intractable condition was investigated using 14-20-day chronic constriction injury (CCI) of the sciatic nerve of 20-day-old rats followed by electrophysiological analysis of acutely isolated spinal cord slices. In addition, defined-medium organotypic spinal cord slice cultures were exposed for 5-6 days to brain-derived neurotrophic factor (BDNF, 200 ng ml −1 ) or to medium conditioned with activated microglia (aMCM). Since microglial activation is an early consequence of CCI, the latter manipulation allowed us to model the effect of peripheral nerve injury on the dorsal horn in vitro. Using whole-cell recording from superficial dorsal horn neurons, we found that both BDNF and CCI increased excitatory synaptic drive to putative excitatory 'radial delay' neurons and decreased synaptic excitation of inhibitory 'tonic islet/central' neurons. BDNF also attenuated synaptic excitation of putative GABAergic neurons identified by glutamic acid decarboxylase (GAD) immunoreactivity. Intrinsic neuronal properties (rheobase, input resistance and action potential discharge rates) were unaffected. Exposure of organotypic cultures to either BDNF or aMCM increased overall excitability of the dorsal horn, as seen by increased cytoplasmic Ca 2+ responses to 35 mm K + as monitored by confocal Fluo-4AM imaging. The effect of aMCM was attenuated by the recombinant BDNF binding protein TrkBd5 and the effect of BDNF persisted when GABAergic inhibition was blocked with SR95531. These findings suggest that CCI enhances excitatory synaptic drive to excitatory neurons but decreases that to inhibitory neurons. Both effects are mediated by nerve injury-induced release of BDNF from microglia.
We report on the first correlative study of the electrophysiological properties, shapes, and projections of enteric neurons in the mouse. Neurons in the myenteric plexus of the mouse colon were impaled with microelectrodes containing biocytin, their passive and active electrophysiological properties determined, and their responses to activation of synaptic inputs investigated. Biocytin, injected into the neurons from which recordings were made, was converted to an optically dense product and used to determine the shapes of neurons. By electrophysiological properties, almost all neurons belonged to one of two classes, AH neurons or S neurons. AH neurons had a biphasic repolarization of the action potential, and slow afterhyperpolarizing potentials usually followed the action potentials. S neurons had monophasic repolarizations, no slow afterhyperpolarization, and fast excitatory postsynaptic potentials in response to fibre tract stimulation. By shape, neurons were divided into Dogiel type II (28/136 neurons) and uniaxonal neurons. Dogiel type II neurons had large, smooth-surfaced cell bodies and several long processes that supplied branches within myenteric ganglia. All Dogiel type II neurons had AH electrophysiology; conversely, most AH neurons had Dogiel type II morphology. The majority of uniaxonal neurons had lamellar dendrites, i.e., Dogiel type I morphology. They projected to the circular muscle (circular muscle motor neurons), to the longitudinal muscle (longitudinal muscle motor neurons), and to other myenteric ganglia (interneurons) and in some cases could not be traced to target cells. All S neurons were uniaxonal. A small proportion of uniaxonal neurons (3/70) had AH electrophysiology. Fast excitatory synaptic potentials were only recorded from uniaxonal neurons and were in most cases blocked by nicotinic receptor antagonists. A small component of fast excitatory transmission in some neurons was antagonized by the purine receptor antagonist PPADS. Slow excitatory postsynaptic potentials were observed in both AH and S neurons. Slow inhibitory postsynaptic potentials were recorded from S neurons. We conclude that the major classes of neurons are Dogiel type II neurons with AH electrophysiological properties and Dogiel type I neurons with S electrophysiological properties. The S/Dogiel type I neurons include circular muscle motor neurons, longitudinal muscle motor neurons, and interneurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.