CCR5 and CXC chemokine receptor 4 (CXCR4) are coreceptors for CD4 as defined by HIV-1 glycoprotein (gp) 120 binding. Pretreatment of T cells with gp120 results in modulation of both CCR5 and CXCR4 responsiveness, which is dependent upon p56lck enzymatic activity. The recent findings that pretreatment of T cells with a natural CD4 ligand, IL-16, could alter cellular responsiveness to macrophage-inflammatory protein-1β (MIP-1β) stimulation, prompted us to investigate whether IL-16 could also alter CXCR4 signaling. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes also results in loss of stromal derived factor-1α (SDF-1α)/CXCR4-induced chemotaxis; however, unlike MIP-1β/CCR5, the effects were not reciprocal. There was no effect on eotaxin/CCR3-induced chemotaxis. Desensitization of CXCR4 by IL-16 required at least 10–15 min pretreatment; no modulation of CXCR4 expression was observed, nor was SDF-1α binding altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56lck-dependent inhibitory signal for CXCR4, which is independent of its tyrosine catalytic activity. By contrast, IL-16/CD4 desensitization of MIP-1β/CCR5 responses requires p56lck enzymatic activity. IL-16/CD4 inhibition of SDF-1α/CXCR4 signals requires the presence of the Src homology 3 domain of p56lck and most likely involves activation of phosphatidylinositol-3 kinase. These studies indicate the mechanism of CXCR4 receptor desensitization induced by a natural ligand for CD4, IL-16, is distinct from the inhibitory effects induced by either gp120 or IL-16 on CCR5.
The ability of HIV-1 gp120 to inhibit chemokine signaling prompted us to determine whether signaling through CD4 by a natural ligand, IL-16, could alter cellular responsiveness to chemokine stimulation. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes results in a selective loss of macrophage-inflammatory protein (MIP)-1β/CCR5-induced chemotaxis. There was no effect on monocyte chemoattractant protein-2/CCR1, -2, or -3-induced chemotaxis. Desensitization of CCR5 by IL-16 required at least 10 min of pretreatment; no modulation of CCR5 expression was observed, nor was MIP-1β binding to CCR5 altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56lck-dependent signal that results in desensitization of CCR5. The desensitization process is reciprocal and again selective, as prior CCR5 stimulation, but not CCR1, -2, or -3 stimulation, completely inhibits IL-16/CD4-induced T cell migration. Of interest, while p56lck enzymatic activity is not required for IL-16-induced migration, it was required for desensitization of CCR5. These studies indicate the existence of reciprocal receptor cross-desensitization between CD4 and CCR5 induced by two proinflammatory cytokines and suggest a selective relationship between the two receptors.
A case of viral transmission to the father of a newly vaccinated infant shows how the virtual disappearance of a once terrifying illness can obscure its recognition and how perplexing public health issues may arise when an invaluable vaccine is anything less than perfect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.