Disulfide bonds are of crucial importance for the structure and antigenic properties of the hepatitis B virus (HBV) envelope. We have evaluated the role of the eight highly conserved cysteines of the major antigenic region for assembly, secretion, and antigenicity of the envelope proteins. Mutants carrying single or multiple substitutions of alanine for cysteine were analyzed using epitope tagging and transient expression in COS-7 cells. The only single cysteines found to be indispensable for efficient secretion were Cys-107 and Cys-138, but double mutation of Cys-137 and Cys-139 also created a block to secretion. Poorly secreted mutants formed aberrant oligomeric structures. The antigenicity of the secreted or intracellularly retained mutants was analyzed using a panel of six monoclonal antibodies recognizing group- and subtype-specific determinants. We demonstrate that Cys-107 is critical for the structure of the group determinant a, whereas Cys-147, previously implicated in intramolecular disulfide bonding, is dispensable. Mutant proteins lacking Cys-121 and -124, -137, -147, or -149 have grossly distorted structures of the y subtype determinant. Our data raise the possibility that HBV strains carrying cysteine mutations are nonreactive in hepatitis B surface antigen-specific immunoassays.
The large L envelope protein of the hepatitis B virus has the peculiar capacity to adopt two transmembrane topologies. The N-terminal preS domain of L initially remains in the cytosol while the S domain is cotranslationally inserted into the endoplasmic reticulum membrane. The preS region of about half of the L molecules' is posttranslationally translocated to the lumenal space. We now demonstrate that the repression of cotranslational translocation of preS is conferred by a preS1-specific sequence. By analysis of L deletion mutants, the cytosolic anchorage determinant was mapped to amino acid sequence 70 to 94 of L. The intrinsic potential of this determinant to suppress cotranslational translocation was confirmed by transfer to the HBV middle envelope protein. In searching for cellular factors potentially involved in this novel process, we identified the cytosolic heat shock protein Hsc70 as a specific binding partner of L. The interaction site(s) for the chaperone was mapped to amino acids 63 to 107 of L using coimmunoprecipitation and in vitro binding analyses. Deletion of the cytosolic anchorage determinant almost completely abolished ATP-dependent Hsc70 binding. Therefore, interaction between Hsc70 and L is likely to be responsible for the suppression of cotranslational translocation of the preS domain.
Little is known about host cell factors necessary for hepatitis B virus (HBV) assembly which involves envelopment of cytosolic nucleocapsids by the S, M and L transmembrane viral envelope proteins and subsequent budding into intraluminal cisternae. Central to virogenesis is the L protein that mediates hepatocyte receptor binding and envelopment of capsids. To serve these topologically conflicting roles, L protein exhibits an unusual dual membrane topology, disposing its N-terminal preS domain inside and outside of the virion lipid envelope. The mixed topology is achieved by posttranslational preS translocation of about half of the L protein molecules across a post-endoplasmic reticulum membrane. Here we identify and characterize a preS-specific sequence that confers the suppression of cotranslational translocation even of a model reporter. This cytosolic anchorage sequence specifically binds the cognate heat shock protein Hsc70, thus indicating chaperone participitation in HBV morphogenesis. Conversely, the M envelope protein needs the assistance of the chaperone calnexin for proper folding and trafficking. Calnexin selectively binds to the N-glycan, specific for M, rather than to the N-glycan, common to all three envelope proteins. As inhibition of the calnexin-M interaction blocks the secretion of viral envelopes, we propose an essential role for calnexin, as well as for Hsc70, in chaperoning HBV assembly.
The envelope proteins of hepadnaviruses are highly cross-linked by disulfide bonds in complete virions and 20 nm subviral envelope particles. We have previously shown which of the cysteines in the envelope proteins of the human hepatitis B virus (HBV) are essential for assembly and secretion of 20 nm particles and for the structure of the major antigenic determinants (HBsAg). Now we have analyzed the intermolecular disulfide bonds between S proteins. We have constructed mutants lacking cysteines and have analyzed their capacity for oligomerization in COS-7 cells. We demonstrate that C121 and C147 located in the second hydrophilic region carrying the major antigenic determinants of the HBV S protein participate in intermolecular disulfide bonding. A disulfide bond involving C124 blocks the accessibility of arginine/lysine at position 122, as shown by trypsin digestion of cysteine mutants. Alkylation studies using N-ethyl-maleimide indicate that C76, C90, and/or C221 carry the only free sulfhydryl group(s) present in 20 nm particles secreted from cell lines.
Unlike those of the S and the L envelope proteins, the functional role of the related M protein in the life cycle of the hepatitis B virus (HBV) is less understood. We now demonstrate that a single N glycan, specific for M, is required for efficient secretion of M empty envelope particles. Moreover, this glycan mediates specific association of M with the chaperone calnexin. Conversely, the N glycan, common to all three envelope proteins, is involved neither in calnexin binding nor in subviral particle release. As proper folding and trafficking of M need the assistance of the chaperone, the glycan-dependent association of M with calnexin may thus play a crucial role in the assembly of HBV. Beyond being modified by N glycosylation, M is modified by O glycosylation occurring within its amino acid sequence at positions 27 to 47. The O glycans, however, were found to be dispensable for secretion of M but may rather support viral infectivity. Surprisingly, nonglycosylated M localizes exclusively to the cytosol, either for degradation or for a yet-unknown function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.