11 beta-Hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) has been proposed as a new target for type 2 diabetes drugs. The aim of the present study was to assess the effects of inhibition of 11 beta-HSD1 on blood glucose levels, glucose tolerance, and insulin sensitivity in mouse models of type 2 diabetes. BVT.2733 is an isoform-selective inhibitor of mouse 11 beta-HSD1. Hyperglycemic and hyperinsulinemic ob/ob, db/db, KKAy, and normal C57BL/6J mice were orally administered BVT.2733 (200 mg/kg.d, twice daily). In hyperglycemic, but not in normal mice, BVT.2733 lowered circulating glucose (to 50-88% of control) and insulin (52-65%) levels. In oral glucose tolerance tests in ob/ob and KKAy mice, glucose concentrations were 65-75% of vehicle values after BVT.2733 treatment, and in KKAy mice insulin concentrations were decreased (62-74%). Euglycemic, hyperinsulinemic clamps demonstrated decreased endogenous glucose production (21-61%). Analysis of hepatic mRNA in KKAy mice showed reduced phosphoenolpyruvate carboxykinase mRNA (71%). A slight reduction in food intake was observed in ob/ob and KKAy mice. Cholesterol, triglycerides, and free fatty acid levels were decreased to 81-86% in KKAy mice after a 4-h fast. The results support previous suggestions that selective 11 beta-HSD1 inhibitors lower blood glucose levels and improve insulin sensitivity in different mouse models of type 2 diabetes.
The COQ2 gene in Saccharomyces cerevisiae encodes a Coq2 (p-hydroxybenzoate:polyprenyl transferase), which is required in the biosynthetic pathway of CoQ (ubiquinone). This enzyme catalyses the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group. We have isolated cDNA which we believe encodes the human homologue of COQ2 from a human muscle and liver cDNA library. The clone contained an open reading frame of length 1263 bp, which encodes a polypeptide that has sequence homology with the Coq2 homologues in yeast, bacteria and mammals. The human COQ2 gene, when expressed in yeast Coq2 null mutant cells, rescued the growth of this yeast strain in the absence of a non-fermentable carbon source and restored CoQ biosynthesis. However, the rate of CoQ biosynthesis in the rescued cells was lower when compared with that in cells rescued with the yeast COQ2 gene. CoQ formed when cells were incubated with labelled decaprenyl pyrophosphate and nonaprenyl pyrophosphate, showing that the human enzyme is active and that it participates in the biosynthesis of CoQ.
The monoclonal antibody 5T4, directed against a human tumor-associated antigen, was expressed as a secreted Fab superantigen fusion protein in Escherichia coli. The product is a putative agent for immunotherapy of non-small cell lung cancer. During fermentation, most of the fusion protein leaked out from the periplasm to the growth medium at a level of approximately 40 mg/ liter. This level was notably low compared with similar products containing identical C H 1, C L , and superantigen moieties, and the Fv framework was therefore engineered. Using hybrid molecules, the light chain was found to limit high expression levels. Substituting five residues in V L increased the level almost 15 times, exceeding 500 mg/liter in the growth medium. Here, the substitutions Phe-10 3 Ser, Thr-45 3 Lys, Thr-77 3 Ser, and Leu-78 3 Val were most powerful. In addition, replacing four V H residues diminished cell lysis during fermentation. Thereby the product was preferentially located in the periplasm instead of the growth medium, and the total yield was more than 700 mg/liter. All engineered products retained a high affinity for the tumorassociated antigen. It is suggested that at least some of the identified framework residues generally have to be replaced to obtain high level production of recombinant Fab products in E. coli.
Aims/hypothesis: The aim of this study was to determine the effect of several antidiabetic agents on insulin-stimulated glycogen synthesis, as well as on mRNA expression. Methods: Cultured primary human skeletal myotubes obtained from six healthy subjects were treated for 4 or 8 days without or with glucose (25 mmol/l), insulin (400 pmol/l), rosiglitazone (10 μmol/l), metformin (20 μmol/l) or the AMP-activated kinase activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) (200 μmol/l). After this, insulin-stimulated glycogen synthesis was determined. mRNA levels of the glucose transporters GLUT1 and GL UT4, the peroxisomal proliferator activator receptor gamma (PPAR gamma) co-activator 1 (PGC1) and the myocytespecific enhancer factors (MEF2), MEF2A, MEF2C and MEF2D were determined using real-time PCR analysis after 8 days exposure to the various antidiabetic agents. Results: Insulin-stimulated glycogen synthesis was significantly increased in cultured human myotubes treated with insulin, rosiglitazone or metformin for 8 days, compared with non-treated cells. Furthermore, an 8-day exposure of myotubes to 25 mmol/l glucose impaired insulin-stimulated glycogen synthesis. In contrast, treatment with AICAR was without effect on insulin-mediated glycogen synthesis. Exposure to insulin, rosiglitazone or metformin increased mRNA expression of PGC1 and GLUT4, while AICAR or 25 mmol/l glucose treatment increased GLUT1 mRNA expression. Metformin also increased mRNA expression of the MEF2 isoforms. Conclusions/ interpretation: Enhanced insulin-stimulated glycogen synthesis in human skeletal muscle cell culture coincides with increased GLUT4 and PGC1 mRNA expression following treatment with various antidiabetic agents. These data show that chronic treatment of human myotubes with insulin, metformin or rosiglitazone has a direct positive effect on insulin action and mRNA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.