Prolamellar bodies and prothylakoids from etioplasts of wheat (Triticum aestivum L. cv. Starke II, Weibull) were separated by sucrose density gradient centrifugation. Top‐loaded and bottom‐loaded sucrose gradients were compared. As a consequence of avoiding long time exposure of the membranes to low sucrose concentrations, separation in bottom‐loaded gradients, as compared to separation in top‐loaded gradients, resulted in a sharper and more narrow band of prothylakoids, and in better preservation of phototransformable protochlorophyllide, especially in the prothylakoids. In bottom‐loaded gradients, the prothylakoids were found concentrated in a band at a density of 1.20 g'ml−1. The prolamellar bodies were found at a density of 1.17 g'ml−1. In top‐loaded gradients the prothylakoids were found at a lower density than the prolamellar bodies. The prothylakoid fraction contained about 60% of the recovered protochlorophyllide and about 85% of the recovered protein. Absorption and fluorescence emission spectra revealed a higher amount of phototransformable protochlorophyllide, in relation to non‐phototransformable, in the prolamellar body fraction than in the prothylakoid fraction. Polyacrylamide gel electrophoresis indicated a high proportion of protochlorophyllide reductase in the prolamellar bodies. Chloroplast ATPase (CF1) was found predominantly in the prothylakoid fraction. Thus, our results strongly indicate the presence of phototransformable protochlorophyllide in the prolamellar bodies proper, while the main bulk of proteins are located in the prothylakoids.
1989. On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. -Physiol. Plant. 76: 135-143.The inner membranes from wheat {Triticum aestivum L. cv. Walde) etioplasts were separated into membrane fractions representative of prolamellar bodies and prothylakoids by differential and gradient centrifugations. The isolated fractions were characterized by absorption-, low-temperature fluorescence-, and circular dichroism (CD) spectroscopy, by high performancy liquid chromatography and by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The prolamellar body fraction was enriched in NADPH-protochlorophyllide oxidoreductase (E.C. 1.6.99.1), and in protochlorophylhde showing an absorption maximum at 650 nm and a fluorescence emission maximum at 657 nm. Esterified protochlorophyllide was mainly found in the prothylakoid fraction. The carotenoid content was qualitatively the same in the two fractions. On a protein basis the carotenoid content was about three times higher in the prolamellar body fraction than in the prothylakoid fraction. The CD spectra of the membrane fractions showed a CD couplet with a positive band at 655 nm, a zero crossing at 643-644 nm and a negative band at 623-636 nm. These results differ from earlier CD measurements on protochlorophyllide holochrome preparations. The results support the interpretation that protochlorophyllide is present as large aggregates in combination with NADPH and NADPH-protochlorophyllide oxidoreductase in the prolamellar bodies.
The inner membranes from wheat (Triticum aestivum L. cv. Walde, Weibull) etioplasts were separated by density centrifugation. The etioplasts were broken by osmotic shock and the inner membranes were split by the sheering forces when pressed through a syringe needle. Membrane fractions representative of prolamellar bodies and prothylakoids, respectively, were achieved by separation on a 20–50% continuous sucrose density gradient followed by different purification procedures. The membrane contents of the isolated fractions were characterized by low temperature fluorescence spectra, sodium dodecyl sulphate polyacrylamide gel electrophoresis and electron micrographs. The prolamellar body and the prothylakoid fractions had a fluorescence emission ratio 657/633 nm of 18 and 0.9, respectively. The main part of the total amount of PChlide was found in the prolamellar body fraction. The electrophoretograms stained with Coomassie Blue showed the presence of mainly two polypeptides. The NADPH‐protochlorophyllide oxidoreductase was the dominating polypeptide in the prolamellar body fraction, and the α and β subunits of the coupling factor 1 of chloroplast ATP synthase the dominating polypeptides in the prothylakoid fraction. Silver staining revealed at least 4 additional prominent bands with molecular weights of 86, 66, 34 and 28 kDa. The polypeptide composition of the prolamellar body is thus more complex than earlier judged after Coomassie Blue staining. The function of these polypeptides is unknown, but the knowledge of their presence is important in understanding the formation and function of the prolamellar body.
The prolamellar body (PLB) proteome of dark-grown wheat leaves was characterized. PLBs are formed not only in etioplasts but also in chloroplasts in young developing leaves during the night, yet their function is not fully understood. Highly purified PLBs were prepared from 7-day-old dark-grown leaves and identified by their spectral properties as revealed by low-temperature fluorescence spectroscopy. The PLB preparation had no contamination of extra-plastidal proteins, and only two envelope proteins were found. The PLB proteome was analysed by a combination of 1-D SDS-PAGE and nano-LC FTICR MS. The identification of chlorophyll synthase in the PLB fraction is the first time this enzyme protein was found in extracts of dark-grown plants. This finding is in agreement with its previous localization to PLBs using activity studies. NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyses the reduction of protochlorophyllide to chlorophyllide, dominates the proteome of PLBs. Besides the identification of the PORA protein, the PORB protein was identified for the first time in dark-grown wheat. Altogether 64 unique proteins, representing pigment biosynthesis, photosynthetic light reaction, Calvin cycle proteins, chaperones and protein synthesis, were identified. The in number of proteins' largest group was the one involved in photosynthetic light reactions. This fact strengthens the assumption that the PLB membranes are precursors to the thylakoids and used for the formation of the photosynthetic membranes during greening. The present work is important to enhance our understanding of the significance of PLBs in chloroplast development.
The localization of NADPH‐protochlorophyllide oxidoreductase (PChlide reductase, EC 1.6.99.–) in dark‐grown and in irradiated dark‐grown leaves of wheat (Triticum aestivum L. cv. Walde) was investigated by subjecting thin sections of Lowicryl K4M‐embedded leaf pieces to a monospecific antiserum raised against PChlide reductase followed by protein A‐gold. A well‐preserved antigenicity of the tissue was achieved by polymerizing the resin under UV‐light at low temperature. In dark‐grown leaves PChlide reductase was found in prolamellar bodies only. In leaves irradiated for 30 min with white light PChlide reductase was found not only in the transformed prolamellar bodies but also to a large extent in connection with the prothylakoids. The localization of PChlide reductase is discussed in relation to fluorescence emission spectra of the dark‐grown and greening leaves. We conclude that the light‐dependent transformation of protochlorophyllide to chlorophyllide initiates a translocation of PChlide reductase from the prolamellar bodies to the prothylakoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.