Organic thiols are toxic to eukaryotic cells. Treatment of cells with thiols activates expression of grp78, but it is not known if, like other forms of stress, there is a battery of stress response genes that are induced by thiols. In LLC-PK1 renal epithelial cells, mRNAs for both grp78 and gadd153 were induced by thiols with similar time, concentration and structure-activity dependence. Dithiothreitol (DTT) was the most potent reductant and inducer of gene expression among the thiols tested. Nuclear run-on assays demonstrated that DTT activated both grp78 and gadd153 genes transcriptionally. A hamster gadd153 promoter construct which contains enhancer elements necessary for gadd153 activation was stably integrated into the LLC-PK1 cell genome and was activated by DTT. Although auto-oxidation of thiols can generate active oxygen species, transcriptional activation of the gadd153 promoter was not due to formation of hydrogen peroxide or superoxide since neither catalase nor superoxide dismutase prevented activation of the gadd153 promoter by DTT. The concentration dependence for activation of the gadd153 promoter correlated with inhibition of dome formation and protein synthesis, two toxic effects of DTT in LLC-PK1 cells. Thus, both grp78 and gadd153 are members of a gene battery which is responsive to reductive stress. There appears to be considerable, but not complete, overlap between the upstream signaling pathways for activation of both genes.
The discovery that 3-hydroxy-3-methyglutaryl coenzyme A reductase was a rate-determining step in the biosynthesis of cholesterol led to the discovery of inhibitors of this enzyme. To support the development of these agents (statins) as potential hypocholesterolemic drugs, a variety of preclinical studies were conducted in several animal species. Not unexpectedly due to the central role played by mevalonic acid and its products including cholesterol in development and maintenance of cellular homeostasis, administration of high dosage levels of these agents led to the expression of a broad variety of adverse effects in many different tissues. Using the tools of toxicologic pathology and classical risk assessment, these varied toxicities were evaluated by many groups relative to the conditions of use in human therapy and a perspective was developed on potential human risk. These approaches of mechanism-based risk assessment predicted that most of the adverse effects observed in animals would not be seen under conditions of human use and supported the successful introduction of one of the most important classes of human medicines.
trans-4,5-Dihydroxy-1,2-dithiane, the intramolecular disulfide form of dithiothreitol (DTTox) transcriptionally activates the stress-responsive genes gadd153(chop) and grp78. Herein, we used a renal epithelial cell line, LLC-PK1, to investigate the mechanism(s) whereby DTTox activates a molecular stress response. DTTox activated both grp78 and gadd153 transcriptionally, but gadd153 mRNA stability also increased suggesting that both transcriptional and posttranscriptional mechanisms are involved. DTTox did not activate hsp70 transcription indicating that a heat shock response was not induced. Structure-activity studies showed that DTTox analogues lacking the intramolecular disulfide were inactive. Furthermore, the ring-open intermolecular disulfide form of DTTox, 2-hydroxyethyl disulfide, was only a weak inducer of grp78 and gadd153 but was a strong inducer of hsp70 mRNA and a potent oxidant that lowered the NADPH/NADP ؉ ratio and depleted reduced glutathione (GSH). DTTox had little effect on the overall GSH and NADPH levels; thus cells were not undergoing oxidative stress; however, the NADPH/NADP ؉ ratio decreased slightly indicating that reducing equivalents were consumed. LLC-PK1 cells reduced DTTox to DTT, and the kinetics as well as the concentration dependence for reduction correlated with induction of both grp78 and gadd153 mRNA. Prior treatment with DTTox rendered cells tolerant to the potent nephrotoxicant S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. Bacitracin, an inhibitor of plasma membrane oxidoreductases, blocked DTTox reduction and gene activation as well as DTToxinduced tolerance. Thus, activation of stress genes and induction of cellular tolerance by DTTox is mediated by a novel mechanism involving cellular oxidoreductases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.