Previously we identified palmitoyl-, oleoyl-, linoleoyl-, and arachidonoyl-lysophosphatidylcholine (LPC 16:0, 18:1, 18:2 and 20:4) as the most prominent LPC species generated by endothelial lipase (EL). In the present study, we examined the impact of those LPC on acetylcholine (ACh)- induced vascular relaxation. All tested LPC attenuated ACh-induced relaxation, measured ex vivo, using mouse aortic rings and wire myography. The rank order of potency was as follows: 18:2>20:4>16:0>18:1. The attenuating effect of LPC 16:0 on relaxation was augmented by indomethacin-mediated cyclooxygenase (COX)-inhibition and CAY10441, a prostacyclin (PGI2)- receptor (IP) antagonist. Relaxation attenuated by LPC 20:4 and 18:2 was improved by indomethacin and SQ29548, a thromboxane A2 (TXA2)- receptor antagonist. The effect of LPC 20:4 could also be improved by TXA2- and PGI2-synthase inhibitors. As determined by EIA assays, the tested LPC promoted secretion of PGI2, TXA2, PGF2α, and PGE2, however, with markedly different potencies. LPC 16:0 was the most potent inducer of superoxide anion production by mouse aortic rings, followed by LPC 18:2, 20:4 and 18:1, respectively. The strong antioxidant tempol recovered relaxation impairment caused by LPC 18:2, 18:1 and 20:4, but not by LPC 16:0. The tested LPC attenuate ACh-induced relaxation through induction of proconstricting prostanoids and superoxide anions. The potency of attenuating relaxation and the relative contribution of underlying mechanisms are strongly related to LPC acyl-chain length and degree of saturation.
Using mass spectrometry (MS), we examined the impact of endothelial lipase (EL) overexpression on the cellular phospholipid (PL) and triglyceride (TG) content of human aortic endothelial cells (HAEC) and of mouse plasma and liver tissue. In HAEC incubated with the major EL substrate, HDL, adenovirus (Ad)-mediated EL overexpression resulted in the generation of various lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) species in cell culture supernatants. While the cellular phosphatidylethanolamine (PE) content remained unaltered, cellular phosphatidylcholine (PC)-, LPC- and TG-contents were significantly increased upon EL overexpression. Importantly, cellular lipid composition was not altered when EL was overexpressed in the absence of HDL. [14C]-LPC accumulated in EL overexpressing, but not LacZ-control cells, incubated with [14C]-PC labeled HDL, indicating EL-mediated LPC supply. Exogenously added [14C]-LPC accumulated in HAEC as well. Its conversion to [14C]-PC was sensitive to a lysophospholipid acyltransferase (LPLAT) inhibitor, thimerosal. Incorporation of [3H]-Choline into cellular PC was 56% lower in EL compared with LacZ cells, indicating decreased endogenous PC synthesis. In mice, adenovirus mediated EL overexpression decreased plasma PC, PE and LPC and increased liver LPC, LPE and TG content. Based on our results, we conclude that EL not only supplies cells with FFA as found previously, but also with HDL-derived LPC and LPE species resulting in increased cellular TG and PC content as well as decreased endogenous PC synthesis.
Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca2+ release and entry of extracellular Ca2+. Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca2+ uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca2+-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs.
ObjectivePreviously we identified palmitoyl-lysophosphatidylcholine (LPC 16:0), as well as linoleoyl-, arachidonoyl- and oleoyl-LPC (LPC 18:2, 20:4 and 18:1) as the most prominent LPC species generated by the action of endothelial lipase (EL) on high-density lipoprotein (HDL). In the present study, the impact of EL and EL-generated LPC on interleukin-8 (IL-8) synthesis was examined in vitro in primary human aortic endothelial cells (HAEC) and in mice.Methods and ResultsAdenovirus-mediated overexpression of the catalytically active EL, but not its inactive mutant, increased endothelial synthesis of IL-8 mRNA and protein in a time- and HDL-concentration-dependent manner. While LPC 18:2 was inactive, LPC 16:0, 18:1 and 20:4 promoted IL-8 mRNA- and protein-synthesis, differing in potencies and kinetics. The effects of all tested LPC on IL-8 synthesis were completely abrogated by addition of BSA and chelation of intracellular Ca2+. Underlying signaling pathways also included NFkB, p38-MAPK, ERK, PKC and PKA. In mice, adenovirus-mediated overexpression of EL caused an elevation in the plasma levels of MIP-2 (murine IL-8 analogue) accompanied by a markedly increased plasma LPC/PC ratio. Intravenously injected LPC also raised MIP-2 plasma concentration, however to a lesser extent than EL overexpression.ConclusionOur results indicate that EL and EL-generated LPC, except of LPC 18:2, promote endothelial IL-8 synthesis, with different efficacy and kinetics, related to acyl-chain length and degree of saturation. Accordingly, due to its capacity to modulate the availability of the pro-inflammatory and pro-adhesive chemokine IL-8, EL should be considered an important player in the development of atherosclerosis.
Background: Vascular endothelial cells represent an important source of arachidonic acid (AA)-derived mediators involved in the generation of anti- or proatherogenic environments. Evidence emerged (in mast cells), that in addition to phospholipases, neutral lipid hydrolases as adipose triglyceride lipase (ATGL) also participate in this process. Objective: To examine the impact of ATGL on AA-release from cellular phospholipids (PL) and on prostacyclin secretion in human aortic endothelial cells (HAEC). Methods and results: siRNA-mediated silencing of ATGL promoted lipid droplet formation and TG accumulation in HAEC (nile red stain). ATGL knockdown decreased the basal and A23187 (calcium ionophore)-induced release of 14C-AA from (14C-AA-labeled) HAEC. In A23187-stimulated ATGL silenced cells, this was accompanied by a decreased content of 14C-AA in cellular PL and a decreased secretion of prostacyclin (determined by 6-keto PGF1α EIA). Conclusions: In vascular endothelial cells, the efficiency of stimulus-induced AA release and prostacyclin secretion is dependent on ATGL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.