In primary monocultures of adult rat liver parenchymal cells (PC), the activities of the xenobiotic metabolizing enzymes microsomal epoxide hydrolase (mEHb), soluble epoxide hydrolase (sEH), glutathione S-transferases (GST), and phenolsulfotransferase (ST) were reduced after 7 d to values below 33% of the initial activities. Furthermore, the gap junctional intercellular communication (GJIC), measured after microinjection by dye transfer, decreased from 90% on Day 1 to undetectable values after 5 d in monoculture. Co-culture of PC with nonparenchymal rat liver epithelial cells (NEC) increased (98% on Day 1) and stabilized (82% on Day 7) the homotypic GJIC of PC. Additionally, most of the measured xenobiotic metabolizing enzyme activities were well stabilized over 1 wk in co-culture. Because GJIC is one of several mechanisms playing an important role in cell differentiation, the importance of GJIC for the stabilization of xenobiotic metabolizing enzymes in PC was investigated. PC in monoculture were, therefore, treated with 2% dimethyl sulfoxide (DMSO), a differentiation promoting factor, and 1,1,1-trichloro-2,2,-bis (p-chlorophenyl) ethane (DDT) (10 micrograms/ml), a liver tumor promotor and inhibitor of GJIC, was given to co-cultures of PC with NEC. DMSO significantly stabilized (68% on Day 7), while DDT significantly inhibited (8% on Day 7) homotypic GJIC of PC in the respective culture systems. In contrast, the activities of mEHb, sEH, GST, and ST were not affected in the presence of DMSO or DDT. These results lead to the assumption that the differentiation parameters measured in this study (i.e., homotypic GJIC and the activities of xenobiotic metabolizing enzymes) are independently regulated in adult rat liver PC.