In the present paper, the thermal durability of polyvinyl alcohol fibers (PVA) was studied after fiber samples had been subjected to temperatures ranging from 90°C to 250°C. Residual mechanical properties, such as tensile strength, elastic modulus and elongation at break, and physical properties, such as density were determined. Weibull statistics were used to quantify the degree of variability in fiber strength, at the different temperature. In addition, thermal analysis of PVA fibers were carried out employing thermogravimetry and differential scanning calorimetry up to the temperature of 800°C. SEM analysis of heated and unheated samples had been carried out in order to allow the identification of the changes in the microstructure of the fibers. The degradation process of PVA fibers manifests itself in a significant loss of mass, stiffness and strength of the fibers, which is progressive with increasing temperature. Thermal analysis has shown that the melting point of PVA fibers begins at approximately 200°C and thermal degradation initiates at about 239ºC. However, progressive loss in tensile strength and elastic modulus was observed starting at a temperature as low as 90°C, due to glass transition temperature of PVA fibers at approximately 66°C. At 220°C, the elastic modulus and strength were reduced at about 45% and 52%, respectively, when compared with respective values of unheated samples. With regards to Weibull modulus, the statistical parameter did not exhibit significant influence on temperature for samples heated up to 145°C, which ranged from 23.4 to 28.8. However, samples heated to 220°C showed a sudden reduction in Weibull modulus to 8.6, indicating that a significant change occurred in the populations of fracture inducing flaws at this temperature level, which clearly affect the tensile strength and Weibull modulus.
This paper addresses the results of an investigation on the influence of the Brazilian raw materials on the mechanical performance of Strain Hardening Cementitious Composites (SHCC). The mixtures were produced with variations of fly ash/cement and sand/cement proportions and with different maximum sand particle. Mechanical properties were evaluated by direct tension, bending and compression tests. Crack formation under direct tension and bending loads was also investigated. The results indicate that the use of high quantities of fly ash with low quantities of fine sand is the ideal combination to obtain strain hardening composites with tensile strain capacity superior to 3% using local materials. The increase in the sand content and particle size affects the behavior of the composites and tended to reduce the strain capacity of the specimens by up to 30%. Keeping constant the fly ash/cement and sand/cement rates it was found that the crack density and width measured under direct tension are only affected by the diameter of the sand for tensile strains in the range of 2%. The same general trends were observed for specimens submitted to compressive and bending loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.