Laser Capture Microdissection (LCM) is a method that allows one to select and dissect well-defined structures, specific cell subpopulations, or even single cells from different types of tissue for subsequent extraction of DNA, RNA, or proteins. Its precision allows the dissection of specific groups of cells, avoiding unwanted cells. However, despite its efficiency, several steps can affect the sample RNA integrity. RNA instability represents a challenge in the LCM method, and low RNA integrity can introduce biases, as different transcripts often have different degradation rates. Here we describe an optimized protocol to provide good-concentration and high-quality RNA from specific structures: dentate gyrus and CA1 in the hippocampus, basolateral amygdala, and anterior cingulate cortex of mouse brain tissue. However, the protocol is applicable to other areas of interest.
Laser Capture Microdissection (LCM) is a method that allows to select and dissecting specific structures, cell populations, or even single cells from different types of tissue to extract DNA, RNA, or proteins. It is easy to perform and precise, avoiding unwanted signals from irrelevant cells, because gene expression may be affected by a bulk of heterogeneous material in a sample. However, despite its efficiency, several steps can affect the sample RNA integrity. In comparison to DNA, RNA is a much more unstable molecule and represents a challenge in the LCM method. Here we describe an optimized protocol to provide good concentration and high-quality RNA in specific structures, such as Dentate Gyrus and CA1 in the hippocampus, basolateral amygdala and anterior cingulate cortex of mouse brain tissue. Keywords: Laser capture microdissection, high-quality RNA, RNA integrity, mouse brain tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.