We discuss the influence of charged dust on radar observations in the Earth ionosphere. This region in the upper Earth atmosphere can be described as a partially ionized, low-temperature plasma. Plasma parameters vary by orders of magnitude spatially and in time. Dust particles influence the charge balance, in some cases dusty plasma condition is met. The polar mesospheric echoes are an example of dust plasma interactions observed with radar. The mesosphere is a region where atmospheric temperature decreases with altitude and can reach frost point temperature.The formation of the polar mesospheric radar echoes involves neutral atmosphere dynamics, which is latitude dependent and it involves charged dust particles, especially icy dust that forms in the polar summer mesosphere. Charged dust can also influence incoherent scatter that results from electromagnetic waves scattering off electrons, where the electrons are coupled to other charged components. Observers rarely report charged dust signatures in the incoherent scatter spectra; we show that there is a good chance for doing so with improved observations. The incoherent scatter can possibly also be used to estimate the amount of charged dust in the direct vicinity of a meteor, as we show based on the order of magnitude considerations. This prospect of new observational results makes theoretical investigations of radio-wave scattering in the presence of charged dust with size distributions worthwhile.
Context. Vega and Fomalhaut display a thermal emission brightness that could possibly arise from hot dust near the stars, an inner extension of their planetary debris disks. An idea has been suggested that nanometer-sized dust particles are kept in the vicinity of the stars by electromagnetic forces. This resembles the trapping that model calculations show in the corotating magnetic field in the inner heliosphere within approximately 0.2 AU from the Sun. Aims. The aim of this work is to study whether the trapping of dust due to electromagnetic forces acting on charged dust near the Sun can occur around Vega and Fomalhaut and what are the conditions for trapping. Methods. We studied the dust trajectories with numerical calculations of the full equation of motion, as well as by using the guiding center approximation. We assumed a constant dust charge and a Parker-type magnetic field, which we estimated for the two stars.Results. We find no bound trajectories of charged particles around Vega or Fomalhaut as long as the radiation pressure force exceeds the gravitational force, that is, for particles smaller than 1 µm. A trapping zone could exist inside of 0.02 AU for Vega and 0.025 AU for Fomalhaut, but only for those particles with radiation pressure force smaller than gravitational force. In comparison to the Sun, the trapping conditions would occur closer to the stars because their faster rotation leads to a more closely wound-up magnetic field spiral. We also show that plasma corotation can be consistent with trapping. Our model calculations show that the charged particles are accelerated to stellar wind velocity very quickly, pass 1 AU after approximately three days, and are further ejected outward where they pass the debris disks at high velocity. We find this for particles with a surface charge-to-mass ratio larger than 10 −6 elementary charges per proton mass for both negatively and positively charged dust and independent of the strength of the radiation pressure force. Based on charging assumptions, this would correspond to dust of sizes 100 nm and smaller.
Abstract. The aim of this study is to investigate through modelling how sputtering by impacting solar wind ions influences the lifetime of dust particles in the inner heliosphere near the Sun. We consider three typical dust materials, silicate, Fe0.4Mg0.6O, and carbon, and describe their sputtering yields based on atomic yields given by the Stopping and Range of Ions in Matter (SRIM) package. The influence of the solar wind is characterized by plasma density, solar wind speed, and solar wind composition, and we assume for these parameter values that are typical for fast solar wind, slow solar wind, and coronal mass ejection (CME) conditions to calculate the sputtering lifetimes of dust. To compare the sputtering lifetimes to typical sublimation lifetimes, we use temperature estimates based on Mie calculations and material vapour pressure derived with the MAGMA chemical equilibrium code. We also compare the sputtering lifetimes to the Poynting–Robertson lifetime and to the collision lifetime. We present a set of sputtering rates and lifetimes that can be used for estimating dust destruction in the fast and slow solar wind and during CME conditions. Our results can be applied to solid particles of a few nanometres and larger. The sputtering lifetimes increase linearly with the size of particles. We show that sputtering rates increase during CME conditions, primarily because of the high number densities of heavy ions in the CME plasma. The shortest sputtering lifetimes we find are for silicate, followed by Fe0.4Mg0.6O and carbon. In a comparison between sputtering and sublimation lifetimes we concentrate on the nanodust population. The comparison shows that sublimation is the faster destruction process within 0.1 AU for Fe0.4Mg0.6O, within 0.05 AU for carbon dust, and within 0.07 AU for silicate dust. The destruction by sputtering can play a role in the vicinity of the Sun. We discuss our findings in the context of recent F-corona intensity measurements onboard Parker Solar Probe.
Abstract. We investigate if the presence of meteoric smoke particles (MSPs) influences the electron temperature during artificial heating in the D-region. By transferring the energy of powerful high-frequency radio waves into thermal energy of electrons, artificial heating increases the electron temperature. Artificial heating depends on the height variation of electron density. The presence of MSPs can influence the electron density through charging of MSPs by electrons, which can reduce the number of free electrons and even result in height regions with strongly reduced electron density, so-called electron bite-outs. We simulate the influence of the artificial heating by calculating the intensity of the upward-propagating radio wave. The electron temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic collisions with neutral species. The influence of MSPs is investigated by including results from a one-dimensional height-dependent ionospheric model that includes electrons, positively and negatively charged ions, neutral MSPs, singly positively and singly negatively charged MSPs, and photochemistry such as photoionization and photodetachment. We apply typical ionospheric conditions and find that MSPs can influence both the magnitude and the height profile of the heated electron temperature above 80 km; however, this depends on ionospheric conditions. During night, the presence of MSPs leads to more efficient heating and thus a higher electron temperature above altitudes of 80 km. We found differences of up to 1000 K in electron temperature for calculations with and without MSPs. When MSPs are present, the heated electron temperature decreases more slowly. The presence of MSPs does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the heated electron temperature with MSPs and without MSPs is less than 25 K. We also investigate model runs using MSP number density profiles for autumn, summer and winter. The night-time electron temperature is expected to be 280 K hotter in autumn than during winter conditions, while the sunlit D-region is 8 K cooler for autumn MSP conditions than for the summer case, depending on altitude. Finally, an investigation of the electron attachment efficiency to MSPs shows a significant impact on the amount of chargeable dust and consequently on the electron temperature.
<p>Artificial heating increases the electron temperature by transferring the energy of powerful high frequency radio waves into thermal energy of electrons. Current models most likely overestimate the effect of artificial heating in the D-region compared to observations [1, 2]. We investigate if the presence of meteoric smoke particles can explain the discrepancy between observations and model. The ionospheric D-region varies in altitude range from about 50 km to 100 km. In the D-region, the electron density is low, the neutral density is relatively high and it is here that meteors ablate. The ablated meteoric material is believed to recondense to form meteoric smoke particles (MSP). The presence of MSP in the D-region can influence plasma densities through charging of dust by electrons and ions, depending on different ionospheric conditions. Charging of dust influence the electron density mainly through electron attachment to the dust, which results in height regions with less electron density. The heating effect varies with electron density height profile [3], since the reduction in radio wave energy is due to absorption by electrons. We study artificial heating of the D-region and consider MSP by using a one-dimensional ionospheric model [4], which also includes photochemistry. In the ionospheric model, we assume that artificial heating only influences the chemical reactions that depend on electron temperature. We model the electron temperature increase during artificial heating with an electron density calculated from the ionospheric model, where we will do the modelling with and without the MSP and compare day and night condition. Our results show a difference in electron temperature increase with the MSP compared to without the MSP and between day and night condition.</p><p>References:</p><ul><li>[1] Senior, A., M. T. Rietveld, M. J. Kosch and W. Singer (2010): &#171;Diagnosing radio plasma heating in the polar summer mesosphere using cross modulation: Theory and observations&#187;. Journal of geophysical research, Vol. 115, A09318.</li> <li>[2] Kero, A., C.-F Enell, Th. Ulich, E. Turunen, M. T. Rietveld and F. H. Honary (2007): &#171;Statistical signature of active D-region HF heating in IRIS riometer data from 1994-2004&#187;. Ann. Geophys., 25, 407-415.</li> <li>[3] Kassa, M., O. Havnes and E. Belova (2005): &#171;The effect of electron bite-outs on artificial electron heating and the PMSE overshoot&#187;. Annales Geophysicae, 23, 3633-3643.</li> <li>[4] Baumann, C., M. Rapp, A. Kero and C.-F. Enell (2013): &#171;Meteor smoke influence on the D-region charge balance &#8211;review of recent in situ measurements and one-dimensional model results&#187;. Ann. Geophys., 31, 2049-2062.</li> </ul>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.