Runx2, a bone-specific transcriptional regulator, is abnormally expressed in highly metastatic prostate cancer cells. Here we identified the functional activities of Runx2 in facilitating tumor growth and osteolysis. Our studies demonstrate that negligible Runx2 is found in normal prostate epithelial and non-metastatic LNCaP prostate cancer cells. In the intra-tibial metastasis model, high Runx2 levels are associated with development of large tumors, increased expression of metastasis-related genes (MMP9, MMP13, VEGF, Osteopontin), and secreted bone resorbing factors (PTHrP, IL-8) promoting osteolytic disease. Runx2 siRNA treatment of PC3 cells decreased cell migration and invasion through Matrigel in vitro, and in vivo shRunx2 expression in PC3 cells blocked their ability to survive in the bone microenvironment. Mechanisms of Runx2 function were identified in co-culture studies demonstrating that PC3 cells promote osteoclastogenesis and inhibit osteoblast activity. The clinical significance of these findings is supported by human tissue microarray studies of prostate tumors at stages of cancer progression, where Runx2 is expressed in both adenocarcinomas and metastatic tumors. Together these findings indicate that Runx2 is a key regulator of events associated with prostate cancer metastatic bone disease.
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases.
Background:The osteogenic Runt-related (RUNX) transcription factor Runx2 is frequently elevated in osseous and nonosseous tumor cells. Results: Genomic RUNX2 target genes involved in motility were identified; RUNX2 depletion reduces cell motility in osteosarcoma cells. Conclusion: RUNX2 regulates cell motility and adhesion in osteosarcoma cells. Significance: RUNX2 may also control migration of normal osteoblasts and/or tumor cells.
Background: Osteosarcoma (OS) is associated with loss of tumor suppressor p53 and increased Runx2. Results: Runx2 and p53 levels are inversely correlated in OS. miR-34c, which targets Runx2, is absent in OS and elevated by p53. Conclusion: p53, miR-34c, and Runx2 form a regulatory loop that is compromised in OS. Significance: RUNX2 could be targeted by miR-34c to prevent OS growth.
Cigarette smoke is the principal risk factor for chronic obstructive pulmonary disease (COPD). Multidrug resistance proteins, such as multidrug resistance-associated protein-1 (MRP1), P-glycoprotein (P-gp), and lung resistance-related protein (LRP), may protect against oxidative stress and toxic compounds generated by cigarette smoking. Expression of MRP1, P-gp, and LRP was evaluated in bronchial epithelium of two study groups of COPD patients and their controls and was associated with disease status and smoking history. In study group 1, MRP1, but not P-gp and LRP expression, was lower (p=0.029) in normal bronchial epithelium of COPD patients (n=11) compared to healthy controls (n=8). MRP1 expression was high in squamous metaplastic epithelium. When including expression in squamous metaplastic cells, MRP1 was still lower in total bronchial epithelium in the COPD group (p=0.038). In study group 2, expression of MRP1, but not of P-gp and LRP, was lower (p=0.047) in lung tissue of (very) severe COPD (n=10) vs mild to moderate COPD (n=9) patients. In conclusion, MRP1 expression was lower in bronchial biopsies of COPD patients than of healthy controls and was also lower in patients with severe COPD than with mild/moderate COPD. Our findings indicate that diminished MRP1 expression in normal bronchial epithelium is associated with COPD. The exact role in COPD pathogenesis is to be revealed by further functional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.