Zebrafish has been gaining increasing amount of interest in behavioral neuroscience as this species may represent a good compromise between system complexity and practical simplicity. Particularly successful have been those studies that utilized zebrafish as a screening tool. Given the complexity of the mechanisms of learning, for example, forward genetic screens with zebrafish could potentially reveal previously unknown genes and molecular pathways that subserve this function. These screens, however, require appropriate phenotypical (e.g. behavioral) paradigms. A step in this direction is the characterization of learning abilities of zebrafish. Here we employ two classical learning tasks in a plus maze. In the first, zebrafish are required to associate a visible cue with food reward irrespective of the location of this pairing. In the second, zebrafish are required to associate the spatial location of food reward irrespective of intra-maze cues. Our results demonstrate that zebrafish perform well in both tasks and show significant acquisition of the association between cue and reward as well as between location and reward. We conclude that zebrafish, similarly to classical laboratory rodents, may have utility in the biological analysis of simple as well as complex forms of associative learning.
Temporal sequences of sexual and maternal behaviors in female rats and their correlation with each other and with performance on a sensory-motor gating response inhibition task assessed by prepulse inhibition (PPI) were investigated following medial prefrontal cortex (mPFC) lesions. Following excitotoxic mPFC (n = 10) or sham (n = 9) lesions, sexual behaviors across the ovarian cycle were scored. After mating and parturition, maternal interactions were scored until pups reached postnatal Day 10. After resumption of the ovarian cycle, the female rats were tested for PPI. Compared with sham lesions, mPFC lesions impaired proceptive behaviors and some maternal behaviors (e.g., pup retrieval, pup licking) but did not affect others (e.g., nest building, pup mouthing). Lesions disrupted temporal sequences of solicitations (number of male orientations followed, within 4 s, by a level change) and pup retrievals (number of pup retrievals followed, within 5 s, by another retrieval). These sequential behavior patterns were significantly correlated with each other and with PPI. However, when PPI effects were partialled out, group differences were less strong, but persisted. This study demonstrated that mPFC manipulations affect actions rich in sequential structure in response to biologically relevant stimuli.
The zebrafish (Danio rerio) has been a favorite model of developmental biologists and geneticists, but only recently have investigators begun to appreciate its usefulness in behavior genetics. Papers focusing on the behavior or brain function of this species were once extremely rare, but during the past decade rapid growth has taken place. Despite the increased interest, however, the number of studies devoted to the analysis of the behavior of this species is still orders of magnitude less than those conducted on more traditional laboratory subjects including the rat and the mouse. The authors review selected literature and demonstrate that zebrafish is an excellent subject for behavior genetics research, especially in the area of forward genetics (mutagenesis).
MK-801, a non-competitive NMDA-R antagonist, has been utilized in the analysis of mammalian learning and memory. The zebrafish is a novel vertebrate study species that has been proposed for the analysis of the mechanisms of learning and memory. Although learning paradigms have been developed for this species, psychopharmacological characterization of its behavioral responses is rudimentary. Before one attempts the analysis of the effects of MK-801 on learning and memory in zebrafish, one needs to know whether this drug affects motor function, perception and/or motivation, factors that may influence performance in learning tasks. Here we conduct dose response analyses investigating the effects of 0, 2, 20 and 100 µM MK-801 administered 24 hours or 30 minutes before the behavioral test, or during the test. We analyze responses in the open tank to measure motor and posture patterns, in the light dark paradigm to evaluate visual perception, and in a group preference task to attempt to quantify motivation. Our results show a significant performance alteration only in the highest (100 µM) dose groups. These fish spent more time on the bottom of their tank, showed elevated erratic movement, increased their clockwise and counterclockwise turning frequency, and reduced the time spent near a shoal stimulus, behavioral alterations that also depended upon the timing of drug administration. Thus, using the current delivery procedures and outbred zebrafish population, the highest dose that may not lead to significant performance deficits is 20 µM, a concentration we propose to use in a future learning study in zebrafish.
The zebrafish is gaining popularity in behavioral neuroscience perhaps because of a promise of efficient large scale mutagenesis and drug screens that could identify a substantial number of yet undiscovered molecular players involved in complex traits. Learning and memory are complex functions of the brain and the analysis of their mechanisms may benefit from such large scale zebrafish screens. One bottleneck in this research is the paucity of appropriate behavioral screening paradigms, which may be due to the relatively uncharacterized nature of the behavior of this species. Here we show that zebrafish exhibit good learning performance in a task adapted from the mammalian literature, a plus maze in which zebrafish are required to associate a neutral visual stimulus with the presence of conspecifics, the rewarding unconditioned stimulus. Furthermore, we show that MK-801, a non-competitive NMDA-R antagonist, impairs memory performance in this maze when administered right after training or just before recall but not when given before training at a dose that does not impair motor function, perception or motivation. These results suggest that the plus maze associative learning paradigm has face and construct validity and that zebrafish may become an appropriate and translationally relevant study species for the analysis of the mechanisms of vertebrate, including mammalian, learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.