This work is devoted to studying dynamic interpolation for obstacle avoidance. This is a problem that consists of minimizing a suitable energy functional among a set of admissible curves subject to some interpolation conditions. The given energy functional depends on velocity, covariant acceleration and on artificial potential functions used for avoiding obstacles.We derive first order necessary conditions for optimality in the proposed problem; that is, given interpolation and boundary conditions we find the set of differential equations describing the evolution of a curve that satisfies the prescribed boundary values, interpolates the given points and is an extremal for the energy functional.We study the problem in different settings including a general one on a Riemannian manifold and a more specific one on a Lie group endowed with a left-invariant metric. We also consider a sub-Riemannian problem. We illustrate the results with examples of rigid bodies, both planar and spatial, and underactuated vehicles including a unicycle and an underactuated unmanned vehicle.
In this letter we study variational obstacle avoidance problems on complete Riemannian manifolds. The problem consists of minimizing an energy functional depending on the velocity, covariant acceleration and a repulsive potential function used to avoid a static obstacle on the manifold, among a set of admissible curves. We derive the dynamical equations for extrema of the variational problem, in particular on compact connected Lie groups and Riemannian symmetric spaces. Numerical examples are presented to illustrate the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.