Inhibition of aromatase is an efficient approach for the prevention and treatment of breast cancer. New A,D-ring modified steroid analogues of formestane and testolactone were designed and synthesized and their biochemical activity was investigated in vitro in an attempt to find new aromatase inhibitors and to gain insight into their structure-activity relationships (SAR). All compounds tested were less active than formestane. However, the 3-deoxy steroidal olefin 3a and its epoxide derivative 4a proved to be strong competitive aromatase inhibitors (K(i) = 50 and 38 nM and IC50 = 225 and 145 nM, respectively). According to our findings, the C-3 carbonyl group is not essential for anti-aromatase activity, but 5alpha-stereochemistry and some planarity in the steroidal framework is required. Furthermore, modification of the steroidal cyclopentanone D-ring, by construction of a delta-lactone six-membered ring, decreases the inhibitory potency. From the results obtained, it may be concluded that the binding pocket of the active site of aromatase requires planarity in the region of the steroid A,B-rings and the D-ring structure is critical for the binding.
A series of 5alpha-androst-3-enes and 3alpha,4alpha-epoxy-5alpha-androstanes were synthesized and tested for their abilities to inhibit aromatase in human placental microsomes. In these series the original C-17 carbonyl group was replaced by hydroxyl, acetyl and hydroxyimine groups. Inhibition kinetic analysis on the most potent steroid of these series revealed that it inhibits the enzyme in a competitive manner (IC(50)=6.5 microM). The achieved data pointed out the importance of the C-17 carbonyl group in the D-ring of the studied steroids as a structural feature required to reach maximum aromatase inhibitory activity. Further, at least one carbonyl group (C-3 or C-17) seems to be essential to effective aromatase inhibition.
In the rat, in response to blastocyst implantation, stromal cells of the endometrium proliferate and differentiate into decidual cells, forming the decidua. After reaching its maximum development, the decidua undergoes regression. This phenomenon appears to be due to an active process involving apoptosis. As there is sparse knowledge concerning the mechanisms of induction of decidual cell death, the potential role of cytokines present in the uterine environment during pregnancy, such as tumor necrosis factor (TNF) and interferon-gamma (INF-gamma) was explored in primary cultures of rat decidual cells. The effects of these factors upon cellular viability, nuclear morphologic alterations, expression, and enzymatic activities of the effector caspases-3/7 were evaluated. The results obtained demonstrated that in contrast to TNF, which did not induce any alteration, INF-gamma and in association with TNF caused a decrease in cell viability and an increase in the appearance of apoptotic bodies in a time-dependent manner that was augmented in the co-presence of TNF. An increase in caspase-3/7 activities after 12 hr of TNF/INF-gamma treatment was also observed. These findings suggest that INF-gamma expressed in the uterine environment may play an important role in regulating apoptosis through potential synergistic mechanisms with TNF and thereby modulate decidual stability and regression during pregnancy.
BackgroundAromatase, the cytochrome P-450 enzyme (CYP19) responsible for estrogen biosynthesis, is an important target for the treatment of estrogen-dependent breast cancer. In fact, the use of synthetic aromatase inhibitors (AI), which induce suppression of estrogen synthesis, has shown to be an effective alternative to the classical tamoxifen for the treatment of postmenopausal patients with ER-positive breast cancer. New AIs obtained, in our laboratory, by modification of the A and D-rings of the natural substrate of aromatase, compounds 3a and 4a, showed previously to efficiently suppress aromatase activity in placental microsomes. In the present study we have investigated the effects of these compounds on cell proliferation, cell cycle progression and induction of cell death using the estrogen-dependent human breast cancer cell line stably transfected with the aromatase gene, MCF-7 aro cells.ResultsThe new steroids inhibit hormone-dependent proliferation of MCF-7aro cells in a time and dose-dependent manner, causing cell cycle arrest in G0/G1 phase and inducing cell death with features of apoptosis and autophagic cell death.ConclusionOur in vitro studies showed that the two steroidal AIs, 3a and 4a, are potent inhibitors of breast cancer cell proliferation. Moreover, it was also shown that the antiproliferative effects of these two steroids on MCF-7aro cells are mediated by disrupting cell cycle progression, through cell cycle arrest in G0/G1 phase and induction of cell death, being the dominant mechanism autophagic cell death. Our results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer.
A recent approach for treatment and prevention of estrogen-dependent breast cancer focuses on the inhibition of aromatase, the enzyme that catalyzes the final step of estrogen biosynthesis. Some synthetic steroids, such as formestane and exemestane, resembling the natural enzyme substrate androstenedione, revealed to be potent and useful aromatase inhibitors (AIs) and were approved for the treatment of estrogen-dependent breast cancer in postmenopausal women. Recently, we found that five newly synthesized steroids with chemical features in the A- and D-rings considered important for drug-receptor interaction efficiently inhibit aromatase derived from human placental microsomes. In this work, these steroids showed a similar pattern of anti-aromatase activity in several aromatase-expressing cell lines. 5alpha-androst-3-en-17-one and 3alpha,4alpha-epoxy-5alpha-androstan-17-one were revealed to be the most potent inhibitors. These compounds induced a time-dependent inhibition of aromatase, showing to be irreversible AIs. The specific interactions of these compounds with aromatase active sites were further demonstrated by site-directed mutagenesis studies and evaluated by computer-aided molecular modeling. Both compounds were able to suppress hormone-dependent proliferation of MCF-7aro cells in a dose-dependent manner. These findings are important for the elucidation of a structure-activity relationship on aromatase, which may help in the development of new AIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.